IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v150y2016icp44-57.html
   My bibliography  Save this article

Study on the systematic approach of Markov modeling for dependability analysis of complex fault-tolerant features with voting logics

Author

Listed:
  • Son, Kwang Seop
  • Kim, Dong Hoon
  • Kim, Chang Hwoi
  • Kang, Hyun Gook

Abstract

The Markov analysis is a technique for modeling system state transitions and calculating the probability of reaching various system states. While it is a proper tool for modeling complex system designs involving timing, sequencing, repair, redundancy, and fault tolerance, as the complexity or size of the system increases, so does the number of states of interest, leading to difficulty in constructing and solving the Markov model. This paper introduces a systematic approach of Markov modeling to analyze the dependability of a complex fault-tolerant system. This method is based on the decomposition of the system into independent subsystem sets, and the system-level failure rate and the unavailability rate for the decomposed subsystems. A Markov model for the target system is easily constructed using the system-level failure and unavailability rates for the subsystems, which can be treated separately. This approach can decrease the number of states to consider simultaneously in the target system by building Markov models of the independent subsystems stage by stage, and results in an exact solution for the Markov model of the whole target system. To apply this method we construct a Markov model for the reactor protection system found in nuclear power plants, a system configured with four identical channels and various fault-tolerant architectures. The results show that the proposed method in this study treats the complex architecture of the system in an efficient manner using the merits of the Markov model, such as a time dependent analysis and a sequential process analysis.

Suggested Citation

  • Son, Kwang Seop & Kim, Dong Hoon & Kim, Chang Hwoi & Kang, Hyun Gook, 2016. "Study on the systematic approach of Markov modeling for dependability analysis of complex fault-tolerant features with voting logics," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 44-57.
  • Handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:44-57
    DOI: 10.1016/j.ress.2016.01.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016000235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.01.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verlinden, Steven & Deconinck, Geert & Coupé, Bernard, 2012. "Hybrid reliability model for nuclear reactor safety system," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 35-47.
    2. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
    3. Min Xie & Chengjie Xiong & Szu-Hui Ng, 2014. "A study of N-version programming and its impact on software availability," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(10), pages 2145-2157, October.
    4. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    5. Daochuan Ge & Ruoxing Zhang & Qiang Chou & Yanhua Yang, 2015. "Probabilistic model–based multi-integration formulas for quantifying a generalized minimal cut sequence," Journal of Risk and Reliability, , vol. 229(1), pages 73-82, February.
    6. Lisnianski, Anatoly, 2007. "Extended block diagram method for a multi-state system reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1601-1607.
    7. Fort, Ada & Mugnaini, Marco & Vignoli, Valerio & Gaggii, Vittorio & Pieralli, Moreno, 2015. "Fault tolerant design of a field data modular readout architecture for railway applications," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 456-462.
    8. Guo, Haitao & Yang, Xianhui, 2008. "Automatic creation of Markov models for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 829-837.
    9. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Modelling and optimization of proof testing policies for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 838-854.
    10. Chiacchio, F. & Compagno, L. & D'Urso, D. & Manno, G. & Trapani, N., 2011. "Dynamic fault trees resolution: A conscious trade-off between analytical and simulative approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1515-1526.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Qingzhu & Yang, Yinghao & Zhang, Hang & Peng, Changhong & Lu, Jianchao, 2022. "Analysis of simplification in Markov state-based models for reliability assessment of complex safety systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Å nipas, Mindaugas & Radziukynas, Virginijus & ValakeviÄ ius, Eimutis, 2017. "Modeling reliability of power systems substations by using stochastic automata networks," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 13-22.
    3. Å nipas, Mindaugas & Radziukynas, Virginijus & ValakeviÄ ius, Eimutis, 2018. "Numerical solution of reliability models described by stochastic automata networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 570-578.
    4. Son, Kwang Seop & Seong, Seung Hwan & Kang, Hyun Gook & Jang, Gwi Sook, 2020. "Development of state-based integrated dependability model of RPS in NPPs considering CCF and periodic testing effects at the early design phase," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    2. Liang, Qingzhu & Yang, Yinghao & Zhang, Hang & Peng, Changhong & Lu, Jianchao, 2022. "Analysis of simplification in Markov state-based models for reliability assessment of complex safety systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Son, Kwang Seop & Seong, Seung Hwan & Kang, Hyun Gook & Jang, Gwi Sook, 2020. "Development of state-based integrated dependability model of RPS in NPPs considering CCF and periodic testing effects at the early design phase," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Ge, Daochuan & Lin, Meng & Yang, Yanhua & Zhang, Ruoxing & Chou, Qiang, 2015. "Quantitative analysis of dynamic fault trees using improved Sequential Binary Decision Diagrams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 289-299.
    5. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Eryilmaz, Serkan & Devrim, Yilser, 2019. "Theoretical derivation of wind plant power distribution with the consideration of wind turbine reliability," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 192-197.
    7. Fort, Ada & Mugnaini, Marco & Vignoli, Valerio & Gaggii, Vittorio & Pieralli, Moreno, 2015. "Fault tolerant design of a field data modular readout architecture for railway applications," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 456-462.
    8. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    9. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    10. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    11. Rachid Sal & Rachid Nait-Said & Mouloud Bourareche, 2017. "Dealing with uncertainty in effect analysis of test strategies on safety instrumented system performance," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1945-1958, November.
    12. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    13. Macchi, Marco & Garetti, Marco & Centrone, Domenico & Fumagalli, Luca & Piero Pavirani, Gian, 2012. "Maintenance management of railway infrastructures based on reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 71-83.
    14. Florent Brissaud & Anne Barros & Christophe Bérenguer, 2012. "Probability of failure on demand of safety systems: impact of partial test distribution," Journal of Risk and Reliability, , vol. 226(4), pages 426-436, August.
    15. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    16. Lirong Cui & Shijia Du & Aofu Zhang, 2014. "Reliability measures for two-part partition of states for aggregated Markov repairable systems," Annals of Operations Research, Springer, vol. 212(1), pages 93-114, January.
    17. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    18. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    19. Dharmaraja, S. & Vinayak, Resham & Trivedi, Kishor S., 2016. "Reliability and survivability of vehicular ad hoc networks: An analytical approach," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 28-38.
    20. Liu, Zhitao & Tan, CherMing & Leng, Feng, 2015. "A reliability-based design concept for lithium-ion battery pack in electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 169-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:44-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.