IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v193y2020ics0951832017301485.html
   My bibliography  Save this article

Development of state-based integrated dependability model of RPS in NPPs considering CCF and periodic testing effects at the early design phase

Author

Listed:
  • Son, Kwang Seop
  • Seong, Seung Hwan
  • Kang, Hyun Gook
  • Jang, Gwi Sook

Abstract

In the design process of safety critical digital systems, the quantitative analysis of their dependability is essential step to enhance the safety of nuclear power plants. Earlier this analysis can be performed, higher safety can be achieved in a more cost effective manner. In this paper, we present an integrated dependability evaluation model of the reactor protection system in nuclear power plants based on the Markov model. The complex interrelationship among dependability parameters such as architecture, channel-level failure, repair, common cause failure and periodic surveillance test are modeled systematically, which cannot be achieved by using conventional static methods. To prevent the integrated dependability model of reactor protection system from exploding the state, we treat each channel as the hyper component of which failure rate is the channel-level failure rate studied in the previous work. Using this concept, we simplify the model by incorporating various dependability parameters into the model. Using the model, quantitative results for reliability, availability, safety and spurious trip probability of reactor protection system are presented depending on various channel configurations. From the results, we can obtain insight into which parameters have the greatest effect on dependability and guideline for how to optimize parameters to satisfy the system requirements at the early design phase.

Suggested Citation

  • Son, Kwang Seop & Seong, Seung Hwan & Kang, Hyun Gook & Jang, Gwi Sook, 2020. "Development of state-based integrated dependability model of RPS in NPPs considering CCF and periodic testing effects at the early design phase," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832017301485
    DOI: 10.1016/j.ress.2019.106645
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017301485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106645?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lisnianski, Anatoly, 2007. "Extended block diagram method for a multi-state system reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1601-1607.
    2. Courtois, Pierre-Jacques & Delsarte, Philippe, 2006. "On the optimal scheduling of periodic tests and maintenance for reliable redundant components," Reliability Engineering and System Safety, Elsevier, vol. 91(1), pages 66-72.
    3. Dutuit, Y. & Innal, F. & Rauzy, A. & Signoret, J.-P., 2008. "Probabilistic assessments in relationship with safety integrity levels by using Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1867-1876.
    4. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Modelling and optimization of proof testing policies for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 838-854.
    5. Son, Kwang Seop & Kim, Dong Hoon & Kim, Chang Hwoi & Kang, Hyun Gook, 2016. "Study on the systematic approach of Markov modeling for dependability analysis of complex fault-tolerant features with voting logics," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 44-57.
    6. Nguyen, T.P. Khanh & Beugin, Julie & Marais, Juliette, 2015. "Method for evaluating an extended Fault Tree to analyse the dependability of complex systems: Application to a satellite-based railway system," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 300-313.
    7. Hellmich, Mario & Berg, Heinz-Peter, 2015. "Markov analysis of redundant standby safety systems under periodic surveillance testing," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 48-58.
    8. Lu, Lixuan & Jiang, Jin, 2007. "Analysis of on-line maintenance strategies for k-out-of-n standby safety systems," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 144-155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Qingzhu & Yang, Yinghao & Zhang, Hang & Peng, Changhong & Lu, Jianchao, 2022. "Analysis of simplification in Markov state-based models for reliability assessment of complex safety systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2011. "Modeling safety instrumented systems with MooN voting architectures addressing system reconfiguration for testing," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 545-563.
    2. Shin, Sung Min & Jeon, In Seop & Kang, Hyun Gook, 2015. "Surveillance test and monitoring strategy for the availability improvement of standby equipment using age-dependent model," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 100-106.
    3. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    4. Oliveira, Luiz Fernando & Abramovitch, Rafael Nelson, 2010. "Extension of ISA TR84.00.02 PFD equations to KooN architectures," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 707-715.
    5. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    6. KanÄ ev, DuÅ¡ko & Gjorgiev, Blaže & Volkanovski, Andrija & ÄŒepin, Marko, 2016. "Time-dependent unavailability of equipment in an ageing NPP: Sensitivity study of a developed model," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 11-20.
    7. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2012. "Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 45-60.
    8. KanÄ ev, DuÅ¡ko & ÄŒepin, Marko & Gjorgiev, Blaže, 2014. "Development and application of a living probabilistic safety assessment tool: Multi-objective multi-dimensional optimization of surveillance requirements in NPPs considering their ageing," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 135-147.
    9. Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    10. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    11. Florent Brissaud & Anne Barros & Christophe Bérenguer, 2012. "Probability of failure on demand of safety systems: impact of partial test distribution," Journal of Risk and Reliability, , vol. 226(4), pages 426-436, August.
    12. Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Liang, Qingzhu & Yang, Yinghao & Zhang, Hang & Peng, Changhong & Lu, Jianchao, 2022. "Analysis of simplification in Markov state-based models for reliability assessment of complex safety systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    14. Son, Kwang Seop & Kim, Dong Hoon & Kim, Chang Hwoi & Kang, Hyun Gook, 2016. "Study on the systematic approach of Markov modeling for dependability analysis of complex fault-tolerant features with voting logics," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 44-57.
    15. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    16. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    17. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    18. Hokstad, Per, 2014. "Demand rate and risk reduction for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 12-20.
    19. Qi, Meng & Kan, Yufeng & Li, Xun & Wang, Xiaoying & Zhao, Dongfeng & Moon, Il, 2020. "Spurious activation and operational integrity evaluation of redundant safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    20. Yu, Shui & Wang, Zhonglai & Zhang, Kewang, 2018. "Sequential time-dependent reliability analysis for the lower extremity exoskeleton under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 45-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832017301485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.