IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v169y2018icp570-578.html
   My bibliography  Save this article

Numerical solution of reliability models described by stochastic automata networks

Author

Listed:
  • Å nipas, Mindaugas
  • Radziukynas, Virginijus
  • ValakeviÄ ius, Eimutis

Abstract

This paper presents the solution of Markov chain reliability models with a large state-space. To specify a system reliability model, we use our previously proposed methodology, which is based on the Stochastic Automata Networks formalism. We model parts of the system by arrowhead matrices with functional transition rates. As a result, the infinitesimal generator matrix of the reliability model has a distinctive structure. In this paper, we demonstrate that a block Gauss–Seidel method can be applied very efficiently to such a structure. The application of the proposed methodology is illustrated by an example of a standard 3/2 substation configuration. Even though its Markov chain reliability model has almost two million states, its steady-state probabilities can be estimated in just a few seconds of CPU time.

Suggested Citation

  • Å nipas, Mindaugas & Radziukynas, Virginijus & ValakeviÄ ius, Eimutis, 2018. "Numerical solution of reliability models described by stochastic automata networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 570-578.
  • Handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:570-578
    DOI: 10.1016/j.ress.2017.09.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017301862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.09.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Heungseob & Kim, Pansoo, 2017. "Reliability models for a nonrepairable system with heterogeneous components having a phase-type time-to-failure distribution," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 37-46.
    2. Stewart, William J. & Atif, Karim & Plateau, Brigette, 1995. "The numerical solution of stochastic automata networks," European Journal of Operational Research, Elsevier, vol. 86(3), pages 503-525, November.
    3. Tuǧrul Dayar & Akın Meriç, 2008. "Kronecker representation and decompositional analysis of closed queueing networks with phase-type service distributions and arbitrary buffer sizes," Annals of Operations Research, Springer, vol. 164(1), pages 193-210, November.
    4. Ghosh, Rahul & Kim, DongSeong & Trivedi, Kishor S., 2013. "System resiliency quantification using non-state-space and state-space analytic models," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 109-125.
    5. Guo, Haitao & Yang, Xianhui, 2008. "Automatic creation of Markov models for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 829-837.
    6. Jensen, H.A. & Muñoz, A. & Papadimitriou, C. & Millas, E., 2016. "Model-reduction techniques for reliability-based design problems of complex structural systems," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 204-217.
    7. Son, Kwang Seop & Kim, Dong Hoon & Kim, Chang Hwoi & Kang, Hyun Gook, 2016. "Study on the systematic approach of Markov modeling for dependability analysis of complex fault-tolerant features with voting logics," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 44-57.
    8. Å nipas, Mindaugas & Radziukynas, Virginijus & ValakeviÄ ius, Eimutis, 2017. "Modeling reliability of power systems substations by using stochastic automata networks," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 13-22.
    9. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "Estimation of rare event probabilities in power transmission networks subject to cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 9-20.
    10. Shijia Du & Lirong Cui & Cong Lin, 2016. "Some reliability indexes and sojourn time distributions for a repairable degradation model," Journal of Risk and Reliability, , vol. 230(3), pages 334-349, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Å nipas, Mindaugas & Radziukynas, Virginijus & ValakeviÄ ius, Eimutis, 2017. "Modeling reliability of power systems substations by using stochastic automata networks," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 13-22.
    2. Liang, Qingzhu & Yang, Yinghao & Zhang, Hang & Peng, Changhong & Lu, Jianchao, 2022. "Analysis of simplification in Markov state-based models for reliability assessment of complex safety systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Cui, Lirong & Wu, Bei, 2019. "Extended Phase-type models for multistate competing risk systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 1-16.
    4. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    5. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    6. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Redundancy strategies assessment and optimization of k-out-of-n systems based on Markov chains and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    8. Jon T Selvik & Eirik B Abrahamsen, 2017. "On the meaning of accuracy and precision in a risk analysis context," Journal of Risk and Reliability, , vol. 231(2), pages 91-100, April.
    9. Uysal, Ertugrul & Dayar, Tugrul, 1998. "Iterative methods based on splittings for stochastic automata networks," European Journal of Operational Research, Elsevier, vol. 110(1), pages 166-186, October.
    10. Rocchetta, Roberto, 2022. "Enhancing the resilience of critical infrastructures: Statistical analysis of power grid spectral clustering and post-contingency vulnerability metrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Meisam Sadeghi & Emad Roghanian & Hamid Shahriari & Hassan Sadeghi, 2021. "Reliability optimization for non-repairable series-parallel systems with a choice of redundancy strategies and heterogeneous components: Erlang time-to-failure distribution," Journal of Risk and Reliability, , vol. 235(3), pages 509-528, June.
    12. Cui, Lin & Shu, Yidan & Wang, Zhaohui & Zhao, Jinsong & Qiu, Tong & Sun, Wenyong & Wei, Zhenqiang, 2012. "HASILT: An intelligent software platform for HAZOP, LOPA, SRS and SIL verification," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 56-64.
    13. Peter Buchholz & Gianfranco Ciardo & Susanna Donatelli & Peter Kemper, 2000. "Complexity of Memory-Efficient Kronecker Operations with Applications to the Solution of Markov Models," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 203-222, August.
    14. Kim, Heungseob, 2017. "Optimal reliability design of a system with k-out-of-n subsystems considering redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 572-582.
    15. Karimi, Behzad & Niaki, S.T.A. & Haleh, Hassan & Naderi, Bahman, 2018. "Bi-objective optimization of a job shop with two types of failures for the operating machines that use automated guided vehicles," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 92-104.
    16. Oliveira, Fernando S., 2010. "Limitations of learning in automata-based systems," European Journal of Operational Research, Elsevier, vol. 203(3), pages 684-691, June.
    17. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    18. Cai, Baoping & Li, Wenchao & Liu, Yiliu & Shao, Xiaoyan & Zhang, Yanping & Zhao, Yi & Liu, Zengkai & Ji, Renjie & Liu, Yonghong, 2021. "Modeling for evaluation of safety instrumented systems with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Dhople, S.V. & DeVille, L. & Domínguez-García, A.D., 2014. "A Stochastic Hybrid Systems framework for analysis of Markov reward models," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 158-170.
    20. Dong, Zhengcheng & Tian, Meng & Li, Xin & Lai, Jingang & Tang, Ruoli, 2022. "Mitigating cascading failures of spatially embedded cyber–physical power systems by adding additional information links," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:570-578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.