IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v153y2016icp28-38.html
   My bibliography  Save this article

Reliability and survivability of vehicular ad hoc networks: An analytical approach

Author

Listed:
  • Dharmaraja, S.
  • Vinayak, Resham
  • Trivedi, Kishor S.

Abstract

Vehicular ad hoc network (VANET) is a technology that facilitates communication between vehicles by creating a ‘mobile Internet’. The system aims at ensuring road safety and achieving secured commutation. For this reason, reliability and survivability of the network become matters of prime concern. Reliability and survivability of the network is immensely dependent upon the hardware and channel availability. This paper, primarily focuses on the reliability and survivability of VANET as a function of reliable hardware and channel availability. The reliability of the vehicles and the road side equipment is investigated using reliability block diagrams. The survivability of the network, with respect to reliable hardware and channel availability is explored using Markov chains and Markov reward model. Considering that the communication between the vehicles may take place directly (i.e., vehicle-to-vehicle (V2V)) or through the road side equipment (i.e., vehicle-to-roadside (V2R)), the evaluation is ascertained for both V2V and V2R communications methodology, in terms of network reliability, connectivity and message lost due to unreliable hardware or channel availability. The technique of hierarchical modeling is adopted for the same. The results are also verified against simulation.

Suggested Citation

  • Dharmaraja, S. & Vinayak, Resham & Trivedi, Kishor S., 2016. "Reliability and survivability of vehicular ad hoc networks: An analytical approach," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 28-38.
  • Handle: RePEc:eee:reensy:v:153:y:2016:i:c:p:28-38
    DOI: 10.1016/j.ress.2016.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Vandana & Dharmaraja, S., 2011. "Semi-Markov modeling of dependability of VoIP network in the presence of resource degradation and security attacks," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1627-1636.
    2. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    3. Selvik, J.T. & Aven, T., 2011. "A framework for reliability and risk centered maintenance," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 324-331.
    4. Kim, Youngsuk & Kang, Won-Hee, 2013. "Network reliability analysis of complex systems using a non-simulation-based method," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 80-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tina Song, Wheyming & Lin, Peisyuan, 2018. "System reliability of stochastic networks with multiple reworks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 258-268.
    2. Wang, Ning & Tian, Tian-zi & He, Jia-tao & Zhang, Chang-zhen & Yang, Jun, 2024. "Transmission reliability evaluation of wireless sensor networks considering channel capacity randomness and energy consumption failure," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Anupam Gautam & S. Dharmaraja, 2023. "Reliability and survivability assessment of LTE-A architecture and networks," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 370-392, March.
    4. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2021. "Resilient communication model for satellite networks using clustering technique," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Xiang, Shihu & Yang, Jun, 2018. "Performance reliability evaluation for mobile ad hoc networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 32-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kondakci, Suleyman, 2015. "Analysis of information security reliability: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 275-299.
    2. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    3. Marlow, David R. & Beale, David J. & Mashford, John S., 2012. "Risk-based prioritization and its application to inspection of valves in the water sector," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 67-74.
    4. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Alberti, Alexandre R. & Cavalcante, Cristiano A.V. & Scarf, Philip & Silva, André L.O., 2018. "Modelling inspection and replacement quality for a protection system," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 145-153.
    6. Kawahara, Jun & Sonoda, Koki & Inoue, Takeru & Kasahara, Shoji, 2019. "Efficient construction of binary decision diagrams for network reliability with imperfect vertices," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 142-154.
    7. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.
    8. Bistouni, Fathollah & Jahanshahi, Mohsen, 2014. "Analyzing the reliability of shuffle-exchange networks using reliability block diagrams," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 97-106.
    9. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
    10. Cheng, Minghui & Frangopol, Dan M., 2022. "Life-cycle optimization of structural systems based on cumulative prospect theory: Effects of the reference point and risk attitudes," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    12. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    13. Cipollini, Francesca & Oneto, Luca & Coraddu, Andrea & Murphy, Alan John & Anguita, Davide, 2018. "Condition-based maintenance of naval propulsion systems: Data analysis with minimal feedback," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 12-23.
    14. Cavalieri, Francesco, 2020. "Seismic risk assessment of natural gas networks with steady-state flow computation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    15. D’Amico, Guglielmo & Petroni, Filippo, 2023. "ROCOF of higher order for semi-Markov processes," Applied Mathematics and Computation, Elsevier, vol. 441(C).
    16. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2014. "An illustration of the use of an approach for treating model uncertainties in risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 46-53.
    17. Z. Kovacs & A. Orosz & F. Friedler, 2019. "Synthesis algorithms for the reliability analysis of processing systems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 573-595, June.
    18. Suyog S. Patil & Anand K. Bewoor & Ravinder Kumar & Mohammad Hossein Ahmadi & Mohsen Sharifpur & Seepana PraveenKumar, 2022. "Development of Optimized Maintenance Program for a Steam Boiler System Using Reliability-Centered Maintenance Approach," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    19. Salman, Abdullahi M. & Li, Yue & Bastidas-Arteaga, Emilio, 2017. "Maintenance optimization for power distribution systems subjected to hurricane hazard, timber decay and climate change," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 136-149.
    20. Li, Y.F. & Valla, S. & Zio, E., 2015. "Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation," Renewable Energy, Elsevier, vol. 83(C), pages 222-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:153:y:2016:i:c:p:28-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.