IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v121y2014icp187-197.html
   My bibliography  Save this article

A new simulation model for assessing aircraft emergency evacuation considering passenger physical characteristics

Author

Listed:
  • Liu, Yu
  • Wang, Weijie
  • Huang, Hong-Zhong
  • Li, Yanfeng
  • Yang, Yuanjian

Abstract

Conducting a real aircraft evacuation trial is oftentimes unaffordable as it is extremely expensive and may cause severe injury to participants. Simulation models as an alternative have been used to overcome the aforementioned issues in recent years. This paper proposes a new simulation model for emergency evacuation of civil aircraft. Its unique features and advantages over the existing models are twofold: (1) passengers' critical physical characteristics, e.g. waist size, gender, age, and disabilities, which impact the movement and egress time of individual evacuee from a statistical viewpoint, are taken into account in the new model. (2) Improvements are made to enhance the accuracy of the simulation model from three aspects. First, the staggered mesh discretization method together with the agent-based approach is utilized to simulate movements of individual passengers in an emergency evacuation process. Second, each node discretized to represent cabin space in the new model can contain more than one passenger if they are moving in the same direction. Finally, each individual passenger is able to change his/her evacuation route in a real-time manner based upon the distance from the current position to the target exit and the queue length. The effectiveness of the proposed simulation model is demonstrated on Boeing 767-300 aircraft.

Suggested Citation

  • Liu, Yu & Wang, Weijie & Huang, Hong-Zhong & Li, Yanfeng & Yang, Yuanjian, 2014. "A new simulation model for assessing aircraft emergency evacuation considering passenger physical characteristics," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 187-197.
  • Handle: RePEc:eee:reensy:v:121:y:2014:i:c:p:187-197
    DOI: 10.1016/j.ress.2013.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013002585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirchner, Ansgar & Klüpfel, Hubert & Nishinari, Katsuhiro & Schadschneider, Andreas & Schreckenberg, Michael, 2003. "Simulation of competitive egress behavior: comparison with aircraft evacuation data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 689-697.
    2. Zheng, Xiaoping & Liu, Mengting, 2010. "Forecasting model for pedestrian distribution under emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1186-1192.
    3. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    4. Georgiadou, Paraskevi S. & Papazoglou, Ioannis A. & Kiranoudis, Chris T. & Markatos, Nikolaos C., 2007. "Modeling emergency evacuation for major hazard industrial sites," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1388-1402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gwynne, S.M.V. & Senarath Yapa, U. & Codrington, L. & Thomas, J.R. & Jennings, S. & Thompson, A.J.L. & Grewal, A., 2018. "Small-scale trials on passenger microbehaviours during aircraft boarding and deplaning procedures," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 115-133.
    2. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Fang, Zhi-Ming & Lv, Wei & Jiang, Li-Xue & Xu, Qing-Feng & Song, Wei-Guo, 2016. "Modeling and assessment of civil aircraft evacuation based on finer-grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 102-112.
    4. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Song, Chengcheng & Shao, Quan & Zhu, Pei & Dong, Min & Yu, Wenfei, 2023. "An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Teichmann, Dusan & Dorda, Michal & Sousek, Radovan, 2021. "Creation of preventive mass evacuation plan with the use of public transport," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Guo, Chenglin & Huo, Feizhou & Li, Yufei & Li, Chao & Zhang, Jun, 2024. "An evacuation model considering pedestrian crowding and stampede under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Lovreglio, Ruggiero & Ronchi, Enrico & Borri, Dino, 2014. "The validation of evacuation simulation models through the analysis of behavioural uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 166-174.
    9. Zhou, Di & Zhuang, Xiao & Zuo, Hongfu & Cai, Jing & Zhao, Xufeng & Xiang, Jiawei, 2022. "A model fusion strategy for identifying aircraft risk using CNN and Att-BiLSTM," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Wu, Jie & Wang, Xiuling & Chen, Jinjin & Shu, Gang & Li, Ya, 2015. "The position of a door can significantly impact on pedestrians’ evacuation time in an emergency," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 29-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
    4. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    5. Kaji, Masaru & Inohara, Takehiro, 2017. "Cellular automaton simulation of unidirectional pedestrians flow in a corridor to reproduce the unique velocity profile of Hagen–Poiseuille flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 85-95.
    6. Fang, Zhi-Ming & Lv, Wei & Jiang, Li-Xue & Xu, Qing-Feng & Song, Wei-Guo, 2016. "Modeling and assessment of civil aircraft evacuation based on finer-grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 102-112.
    7. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    8. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
    9. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    10. Feliciani, Claudio & Nishinari, Katsuhiro, 2016. "An improved Cellular Automata model to simulate the behavior of high density crowd and validation by experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 135-148.
    11. Yue, Hao & Guan, Hongzhi & Zhang, Juan & Shao, Chunfu, 2010. "Study on bi-direction pedestrian flow using cellular automata simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 527-539.
    12. Lovreglio, Ruggiero & Spearpoint, Michael & Girault, Mathilde, 2019. "The impact of sampling methods on evacuation model convergence and egress time," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 24-34.
    13. Teichmann, Dusan & Dorda, Michal & Sousek, Radovan, 2021. "Creation of preventive mass evacuation plan with the use of public transport," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    14. Zhao, Yongxiang & Zhang, H.M., 2017. "A unified follow-the-leader model for vehicle, bicycle and pedestrian traffic," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 315-327.
    15. Srinivasan, Aravinda Ramakrishnan & Karan, Farshad Salimi Naneh & Chakraborty, Subhadeep, 2017. "Pedestrian dynamics with explicit sharing of exit choice during egress through a long corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 770-782.
    16. Tang, Tie-Qiao & Shao, Yi-Xiao & Chen, Liang, 2017. "Modeling pedestrian movement at the hall of high-speed railway station during the check-in process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 157-166.
    17. Ogami, Tomohiro & Nishinari, Katsuhiro, 2023. "Features of ladders during evacuation from oil and LNG plants," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    18. Suma, Yushi & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2012. "Anticipation effect in pedestrian dynamics: Modeling and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 248-263.
    19. Huan Cao & Tian Li & Shuxia Li & Tijun Fan, 2017. "An integrated emergency response model for toxic gas release accidents based on cellular automata," Annals of Operations Research, Springer, vol. 255(1), pages 617-638, August.
    20. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:121:y:2014:i:c:p:187-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.