IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v67y2018icp115-133.html
   My bibliography  Save this article

Small-scale trials on passenger microbehaviours during aircraft boarding and deplaning procedures

Author

Listed:
  • Gwynne, S.M.V.
  • Senarath Yapa, U.
  • Codrington, L.
  • Thomas, J.R.
  • Jennings, S.
  • Thompson, A.J.L.
  • Grewal, A.

Abstract

NRC researchers have recently employed computational tools to simulate airline passenger movement – primarily to examine the impact of different procedures on aircraft boarding times. It was felt that the modelling techniques could be improved by the inclusion of current, relevant and refined data on passenger movement. This article outlines a series of small-scale laboratory tests performed to help quantify individual passenger boarding and deplaning movement with and without the presence of luggage. Test subjects were monitored and video recorded while participants moved through a cabin section enabling observers to quantify the performance of specific micro-behaviours that formed the deplaning and boarding process. These tests were conducted at the National Research Council of Canada's prototype cabin research facility. The trials involved a total of 35 subjects who were each observed performing a series of 12 trials inside the cabin section. These trials were formed from the manipulation of three factors: seat pitch (29 in/31 in/33 in), luggage (present/absent), and instructions (continuous flow/discrete movements). During each trial, participants performed a series of micro-behaviours that included traversing the aisle/row, stowing/collecting under-seat bags, seat belt fastening and unfastening and adopting a brace position. In addition, two trials were conducted for each participant outside of the cabin facility to establish baseline straight line movement speeds with and without luggage. The study indicated that the impact of luggage and seat pitch had a notable, but complex, effect on performance and, more importantly, generated an array of data-sets for use in future simulation efforts. For instance, seat pitch appeared to have a more consistent impact when passenger movement was perpendicular to the seat row, as opposed to along the seat row where the impact was varied. Such data collection is necessary to advance empirical support for current and future simulation efforts.

Suggested Citation

  • Gwynne, S.M.V. & Senarath Yapa, U. & Codrington, L. & Thomas, J.R. & Jennings, S. & Thompson, A.J.L. & Grewal, A., 2018. "Small-scale trials on passenger microbehaviours during aircraft boarding and deplaning procedures," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 115-133.
  • Handle: RePEc:eee:jaitra:v:67:y:2018:i:c:p:115-133
    DOI: 10.1016/j.jairtraman.2017.11.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699717303848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2017.11.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Landeghem, H. & Beuselinck, A., 2002. "Reducing passenger boarding time in airplanes: A simulation based approach," European Journal of Operational Research, Elsevier, vol. 142(2), pages 294-308, October.
    2. Nyquist, David C. & McFadden, Kathleen L., 2008. "A study of the airline boarding problem," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 197-204.
    3. Bazargan, Massoud, 2007. "A linear programming approach for aircraft boarding strategy," European Journal of Operational Research, Elsevier, vol. 183(1), pages 394-411, November.
    4. Steffen, Jason H., 2008. "Optimal boarding method for airline passengers," Journal of Air Transport Management, Elsevier, vol. 14(3), pages 146-150.
    5. Michael D. Peterson & Dimitris J. Bertsimas & Amedeo R. Odoni, 1995. "Models and Algorithms for Transient Queueing Congestion at Airports," Management Science, INFORMS, vol. 41(8), pages 1279-1295, August.
    6. Fernandes, Elton & Pacheco, R. R., 2002. "Efficient use of airport capacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(3), pages 225-238, March.
    7. Kirchner, Ansgar & Klüpfel, Hubert & Nishinari, Katsuhiro & Schadschneider, Andreas & Schreckenberg, Michael, 2003. "Simulation of competitive egress behavior: comparison with aircraft evacuation data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 689-697.
    8. Da-wei Sun & Xia-yang Zheng & Zi-jun Chen & Hong-min Wang, 2013. "Comprehensive Evaluation and Optimizing for Boarding Strategies," Springer Books, in: Ershi Qi & Jiang Shen & Runliang Dou (ed.), The 19th International Conference on Industrial Engineering and Engineering Management, edition 127, chapter 0, pages 1499-1506, Springer.
    9. Milne, R. John & Kelly, Alexander R., 2014. "A new method for boarding passengers onto an airplane," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 93-100.
    10. Fang, Zhi-Ming & Lv, Wei & Jiang, Li-Xue & Xu, Qing-Feng & Song, Wei-Guo, 2016. "Modeling and assessment of civil aircraft evacuation based on finer-grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 102-112.
    11. Menkes H. L. van den Briel & J. René Villalobos & Gary L. Hogg & Tim Lindemann & Anthony V. Mulé, 2005. "America West Airlines Develops Efficient Boarding Strategies," Interfaces, INFORMS, vol. 35(3), pages 191-201, June.
    12. Liu, Yu & Wang, Weijie & Huang, Hong-Zhong & Li, Yanfeng & Yang, Yuanjian, 2014. "A new simulation model for assessing aircraft emergency evacuation considering passenger physical characteristics," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 187-197.
    13. Steffen, Jason H. & Hotchkiss, Jon, 2012. "Experimental test of airplane boarding methods," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 64-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Schultz & Michael Schmidt, 2018. "Advancements in Passenger Processes at Airports from Aircraft Perspective," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    2. Ren, Xinhui & Xu, Xiaobing, 2018. "Experimental analyses of airplane boarding based on interference classification," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 55-63.
    3. Michael Schultz & Jörg Fuchte, 2020. "Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    4. Hutter, Leonie & Jaehn, Florian & Neumann, Simone, 2019. "Influencing factors on airplane boarding times," Omega, Elsevier, vol. 87(C), pages 177-190.
    5. Song, Chengcheng & Shao, Quan & Zhu, Pei & Dong, Min & Yu, Wenfei, 2023. "An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Xu, Chenchen & Luo, Yiyang & Fuellhart, Kurt & Shao, Quan & Witlox, Frank, 2023. "Modeling exit choice behavior in airplane emergency evacuations," Journal of Air Transport Management, Elsevier, vol. 112(C).
    7. Picchi Scardaoni, Marco & Magnacca, Fabio & Massai, Andrea & Cipolla, Vittorio, 2021. "Aircraft turnaround time estimation in early design phases: Simulation tools development and application to the case of box-wing architecture," Journal of Air Transport Management, Elsevier, vol. 96(C).
    8. Ren, Xinhui & Zhou, Xiyu & Xu, Xiaobing, 2020. "A new model of luggage storage time while boarding an airplane: An experimental test," Journal of Air Transport Management, Elsevier, vol. 84(C).
    9. Fabrin, Bruna H.P. & Ferrari, Denise B. & Arraut, Eduardo M. & Neumann, Simone, 2024. "Towards balancing efficiency and customer satisfaction in airplane boarding: An agent-based approach," Operations Research Perspectives, Elsevier, vol. 12(C).
    10. Wittmann, Jürgen, 2019. "Customer-oriented optimization of the airplane boarding process," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 31-39.
    11. Zeineddine, Hassan, 2021. "Reducing the effect of passengers’ non-compliance with aircraft boarding rules," Journal of Air Transport Management, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Xinhui & Zhou, Xiyu & Xu, Xiaobing, 2020. "A new model of luggage storage time while boarding an airplane: An experimental test," Journal of Air Transport Management, Elsevier, vol. 84(C).
    2. Camelia Delcea & Liviu-Adrian Cotfas & Nora Chiriță & Ionuț Nica, 2018. "A Two-Door Airplane Boarding Approach When Using Apron Buses," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    3. Michael Schultz & Jörg Fuchte, 2020. "Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    4. Tang, Tie-Qiao & Yang, Shao-Peng & Ou, Hui & Chen, Liang & Huang, Hai-Jun, 2018. "An aircraft boarding model accounting for group behavior," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 182-189.
    5. Camelia Delcea & Liviu-Adrian Cotfas & Mostafa Salari & R. John Milne, 2018. "Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
    6. Milne, R. John & Delcea, Camelia & Cotfas, Liviu-Adrian & Salari, Mostafa, 2019. "New methods for two-door airplane boarding using apron buses," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    7. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    8. Zeineddine, Hassan, 2017. "A dynamically optimized aircraft boarding strategy," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 144-151.
    9. Camelia Delcea & Liviu-Adrian Cotfas & Liliana Crăciun & Anca Gabriela Molanescu, 2018. "Are Seat and Aisle Interferences Affecting the Overall Airplane Boarding Time? An Agent-Based Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    10. Salari, Mostafa & Milne, R. John & Delcea, Camelia & Kattan, Lina & Cotfas, Liviu-Adrian, 2020. "Social distancing in airplane seat assignments," Journal of Air Transport Management, Elsevier, vol. 89(C).
    11. Qiang, Sheng-Jie & Jia, Bin & Jiang, Rui & Huang, Qing-Xia & Radwan, Essam & Gao, Zi-You & Wang, Yu-Qing, 2016. "Symmetrical design of strategy-pairs for enplaning and deplaning an airplane," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 52-60.
    12. Ren, Xinhui & Xu, Xiaobing, 2018. "Experimental analyses of airplane boarding based on interference classification," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 55-63.
    13. Kisiel, Tomasz, 2020. "Resilience of passenger boarding strategies to priority fares offered by airlines," Journal of Air Transport Management, Elsevier, vol. 87(C).
    14. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    15. Michael Schultz & Michael Schmidt, 2018. "Advancements in Passenger Processes at Airports from Aircraft Perspective," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    16. Fabrin, Bruna H.P. & Ferrari, Denise B. & Arraut, Eduardo M. & Neumann, Simone, 2024. "Towards balancing efficiency and customer satisfaction in airplane boarding: An agent-based approach," Operations Research Perspectives, Elsevier, vol. 12(C).
    17. Notomista, Gennaro & Selvaggio, Mario & Sbrizzi, Fiorentina & Di Maio, Gabriella & Grazioso, Stanislao & Botsch, Michael, 2016. "A fast airplane boarding strategy using online seat assignment based on passenger classification," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 140-149.
    18. Zeineddine, Hassan, 2021. "Reducing the effect of passengers’ non-compliance with aircraft boarding rules," Journal of Air Transport Management, Elsevier, vol. 92(C).
    19. Milne, R. John & Kelly, Alexander R., 2014. "A new method for boarding passengers onto an airplane," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 93-100.
    20. Erland, Sveinung & Bachmat, Eitan & Steiner, Albert, 2024. "Let the fast passengers wait: Boarding an airplane takes shorter time when passengers with the most bin luggage enter first," European Journal of Operational Research, Elsevier, vol. 317(3), pages 748-761.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:67:y:2018:i:c:p:115-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.