IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v258y2015icp29-35.html
   My bibliography  Save this article

The position of a door can significantly impact on pedestrians’ evacuation time in an emergency

Author

Listed:
  • Wu, Jie
  • Wang, Xiuling
  • Chen, Jinjin
  • Shu, Gang
  • Li, Ya

Abstract

We study the evacuation model in the framework of game theory and propose a new model in which individuals have preferential directions. In the proposed model, pedestrians are divided into three parts with each part has its own preferred directions. Based on the new model, different positions of a door in rectangle and square rooms were tested to investigate how door positions impact on escape time. In this way, the best location can be found. Simulation results show that no matter how big the room is and how many occupants in it are, the optimal position of a door always locates in the middle of the wall. The optimal door position fits intuitive feeling of human, which also verifies the effectiveness of the proposed model. Therefore, our model simulates the process of pedestrian evacuation naturally. The work in this paper may provide guidance for the reduction of casualties in the event of a real-life escape.

Suggested Citation

  • Wu, Jie & Wang, Xiuling & Chen, Jinjin & Shu, Gang & Li, Ya, 2015. "The position of a door can significantly impact on pedestrians’ evacuation time in an emergency," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 29-35.
  • Handle: RePEc:eee:apmaco:v:258:y:2015:i:c:p:29-35
    DOI: 10.1016/j.amc.2015.01.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315001447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.01.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, R.Y. & Huang, H.J., 2008. "A mobile lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 580-586.
    2. Li, Ya & Lan, Xin & Deng, Xinyang & Sadiq, Rehan & Deng, Yong, 2014. "Comprehensive consideration of strategy updating promotes cooperation in the prisoner’s dilemma game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 284-292.
    3. Ha, Vi & Lykotrafitis, George, 2012. "Agent-based modeling of a multi-room multi-floor building emergency evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2740-2751.
    4. Tanimoto, Jun & Hagishima, Aya & Tanaka, Yasukaka, 2010. "Study of bottleneck effect at an emergency evacuation exit using cellular automata model, mean field approximation analysis, and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5611-5618.
    5. Ji, Xiangfeng & Zhou, Xuemei & Ran, Bin, 2013. "A cell-based study on pedestrian acceleration and overtaking in a transfer station corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1828-1839.
    6. Parisi, Daniel R. & Gilman, Marcelo & Moldovan, Herman, 2009. "A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3600-3608.
    7. Liu, Yu & Wang, Weijie & Huang, Hong-Zhong & Li, Yanfeng & Yang, Yuanjian, 2014. "A new simulation model for assessing aircraft emergency evacuation considering passenger physical characteristics," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 187-197.
    8. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    9. Guo, Xiwei & Chen, Jianqiao & Zheng, Yaochen & Wei, Junhong, 2012. "A heterogeneous lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 582-592.
    10. Wang, Zhigang & Zhang, Haifeng & Wang, Zhen, 2014. "Multiple effects of self-protection on the spreading of epidemics," Chaos, Solitons & Fractals, Elsevier, vol. 61(C), pages 1-7.
    11. Wang, Lei & Zhang, Qian & Cai, Yun & Zhang, Jianlin & Ma, Qingguo, 2013. "Simulation study of pedestrian flow in a station hall during the Spring Festival travel rush," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2470-2478.
    12. Fukuda, Eriko & Kokubo, Satoshi & Tanimoto, Jun & Wang, Zhen & Hagishima, Aya & Ikegaya, Naoki, 2014. "Risk assessment for infectious disease and its impact on voluntary vaccination behavior in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Shuchao & Fu, Libi & Song, Weiguo, 2018. "Exit selection and pedestrian movement in a room with two exits under fire emergency," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 136-147.
    2. Guan, Junbiao & Wang, Kaihua, 2019. "Towards pedestrian room evacuation with a spatial game," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 492-501.
    3. Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    2. Wan, Jiahui & Sui, Jie & Yu, Hua, 2014. "Research on evacuation in the subway station in China based on the Combined Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 33-46.
    3. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    4. Yunqiang Xue & Meng Zhong & Luowei Xue & Bing Zhang & Haokai Tu & Caifeng Tan & Qifang Kong & Hongzhi Guan, 2022. "Simulation Analysis of Bus Passenger Boarding and Alighting Behavior Based on Cellular Automata," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
    5. Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
    6. Li, Wenhang & Gong, Jianhua & Yu, Ping & Shen, Shen & Li, Rong & Duan, Qishen, 2015. "Simulation and analysis of congestion risk during escalator transfers using a modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 28-40.
    7. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
    8. Jie Xu & Yao Ning & Heng Wei & Wei Xie & Jianyuan Guo & Limin Jia & Yong Qin, 2015. "Route Choice in Subway Station during Morning Peak Hours: A Case of Guangzhou Subway," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-8, March.
    9. Li, Shuying & Zhuang, Jun & Shen, Shifei & Wang, Jia, 2017. "Driving-forces model on individual behavior in scenarios considering moving threat agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 127-140.
    10. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    11. Hou, Lei & Liu, Jian-Guo & Pan, Xue & Wang, Bing-Hong, 2014. "A social force evacuation model with the leadership effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 93-99.
    12. Yang, Junheng & Zang, Xiaodong & Chen, Weiying & Luo, Qiang & Wang, Rui & Liu, Yuanqian, 2024. "Improved social force model based on pedestrian collision avoidance behavior in counterflow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    13. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    14. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    15. Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
    16. Chen, Chang-Kun & Li, Jian & Zhang, Dong, 2012. "Study on evacuation behaviors at a T-shaped intersection by a force-driving cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2408-2420.
    17. Cirillo, Emilio N.M. & Muntean, Adrian, 2013. "Dynamics of pedestrians in regions with no visibility— A lattice model without exclusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3578-3588.
    18. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    19. Kaifeng Deng & Meng Li & Guanning Wang & Xiangmin Hu & Yan Zhang & Huijie Zheng & Koukou Tian & Tao Chen, 2022. "Experimental Study on Panic during Simulated Fire Evacuation Using Psycho- and Physiological Metrics," IJERPH, MDPI, vol. 19(11), pages 1-18, June.
    20. Shi, Meng & Lee, Eric Wai Ming & Ma, Yi, 2018. "A novel grid-based mesoscopic model for evacuation dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 198-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:258:y:2015:i:c:p:29-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.