IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v295y2001i3p507-525.html
   My bibliography  Save this article

Simulation of pedestrian dynamics using a two-dimensional cellular automaton

Author

Listed:
  • Burstedde, C
  • Klauck, K
  • Schadschneider, A
  • Zittartz, J

Abstract

We propose a two-dimensional cellular automaton model to simulate pedestrian traffic. It is a vmax=1 model with exclusion statistics and parallel dynamics. Long-range interactions between the pedestrians are mediated by a so-called floor field which modifies the transition rates to neighbouring cells. This field, which can be discrete or continuous, is subject to diffusion and decay. Furthermore it can be modified by the motion of the pedestrians. Therefore, the model uses an idea similar to chemotaxis, but with pedestrians following a virtual rather than a chemical trace. Our main goal is to show that the introduction of such a floor field is sufficient to model collective effects and self-organization encountered in pedestrian dynamics, e.g. lane formation in counterflow through a large corridor. As an application we also present simulations of the evacuation of a large room with reduced visibility, e.g. due to failure of lights or smoke.

Suggested Citation

  • Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
  • Handle: RePEc:eee:phsmap:v:295:y:2001:i:3:p:507-525
    DOI: 10.1016/S0378-4371(01)00141-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437101001418
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(01)00141-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:295:y:2001:i:3:p:507-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.