IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v185y2019icp24-34.html
   My bibliography  Save this article

The impact of sampling methods on evacuation model convergence and egress time

Author

Listed:
  • Lovreglio, Ruggiero
  • Spearpoint, Michael
  • Girault, Mathilde

Abstract

Simulating human behaviour in fire is often one of the main challenges in designing complex buildings, structures or sites for the life safety of occupants. In fact, evacuation simulations represent a fundamental input to assess fire safety performance using a risk analysis approach. The variability in evacuee behaviours (e.g. pre-evacuation delays and uncongested walking speed) can be probabilistically simulated in egress models using distribution functions. The application of probabilistic simulations requires the input distributions to be sampled. This paper describes a series of eight repeated trial evacuations that were carried out using a classroom-based scenario. The paper then investigates how four different sampling methods (namely Simple Random, Stratified, Inversed Stratified and Halton) affect the ability of a computational egress tool to reach convergence when determining the total time for occupants to leave the room. The analysis found that the Stratified and the Inverse Stratified sampling approaches require the least number of simulation runs to converge while the Halton sampling approach needs the greatest number of simulation runs. Moreover, the results indicate that the Halton sampling generates the highest variance for the simulated total evacuation time and thus is more effective at examining scenarios that utilise the extreme ends of the distribution functions.

Suggested Citation

  • Lovreglio, Ruggiero & Spearpoint, Michael & Girault, Mathilde, 2019. "The impact of sampling methods on evacuation model convergence and egress time," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 24-34.
  • Handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:24-34
    DOI: 10.1016/j.ress.2018.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018308901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.12.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gai, Wen-mei & Deng, Yun-feng & Jiang, Zhong-an & Li, Jing & Du, Yan, 2017. "Multi-objective evacuation routing optimization for toxic cloud releases," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 58-68.
    2. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    3. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    4. Zhang, Jun & Song, Weiguo & Xu, Xuan, 2008. "Experiment and multi-grid modeling of evacuation from a classroom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5901-5909.
    5. Guanquan, Chu & Jinhui, Wang, 2012. "Study on probability distribution of fire scenarios in risk assessment to emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 24-32.
    6. Zheng, Xiaoping & Liu, Mengting, 2010. "Forecasting model for pedestrian distribution under emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1186-1192.
    7. Lovreglio, Ruggiero & Ronchi, Enrico & Borri, Dino, 2014. "The validation of evacuation simulation models through the analysis of behavioural uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 166-174.
    8. Georgiadou, Paraskevi S. & Papazoglou, Ioannis A. & Kiranoudis, Chris T. & Markatos, Nikolaos C., 2007. "Modeling emergency evacuation for major hazard industrial sites," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1388-1402.
    9. Hammond, Gregory D. & Bier, Vicki M., 2015. "Alternative evacuation strategies for nuclear power accidents," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 9-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seo, Seung-Kwon & Yoon, Young-Gak & Lee, Ju-sung & Na, Jonggeol & Lee, Chul-Jin, 2022. "Deep Neural Network-based Optimization Framework for Safety Evacuation Route during Toxic Gas Leak Incidents," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Zhihong Li & Shiyao Qiu & Xiaoyu Wang & Li Zhao, 2022. "Modeling and Simulation of Crowd Pre-Evacuation Decision-Making in Complex Traffic Environments," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    4. Wang, Xinjian & Xia, Guoqing & Zhao, Jian & Wang, Jin & Yang, Zaili & Loughney, Sean & Fang, Siming & Zhang, Shukai & Xing, Yongheng & Liu, Zhengjiang, 2023. "A novel method for the risk assessment of human evacuation from cruise ships in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teichmann, Dusan & Dorda, Michal & Sousek, Radovan, 2021. "Creation of preventive mass evacuation plan with the use of public transport," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Fang, Zhi-Ming & Lv, Wei & Jiang, Li-Xue & Xu, Qing-Feng & Song, Wei-Guo, 2016. "Modeling and assessment of civil aircraft evacuation based on finer-grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 102-112.
    3. Seo, Seung-Kwon & Yoon, Young-Gak & Lee, Ju-sung & Na, Jonggeol & Lee, Chul-Jin, 2022. "Deep Neural Network-based Optimization Framework for Safety Evacuation Route during Toxic Gas Leak Incidents," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Feng, Xinhang & Jiang, Yanli & Gai, Wenmei, 2024. "Rural community response to accidental toxic gas release: An individual emergency response model during self-organized evacuations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    6. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    7. Fang, Zhi-Ming & Song, Wei-Guo & Liu, Xuan & Lv, Wei & Ma, Jian & Xiao, Xia, 2012. "A continuous distance model (CDM) for the single-file pedestrian movement considering step frequency and length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 307-316.
    8. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Huang, Rong & Zhao, Xuan & Zhou, Chenyu & Kong, Lingchen & Liu, Chengqing & Yu, Qiang, 2022. "Static floor field construction and fine discrete cellular automaton model: Algorithms, simulations and insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    10. Cao, Shuchao & Song, Weiguo & Lv, Wei & Fang, Zhiming, 2015. "A multi-grid model for pedestrian evacuation in a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 45-61.
    11. Wang, Guanning & Chen, Tao & Hu, Xiangmin & Zheng, Huijie & Jiang, Wenyu, 2022. "Wall-following searching or area coverage searching? Simulation study of the panic evacuation considering the guidance of a single rescuer," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    12. Liu, Yixue & Mao, Zhanli, 2022. "An experimental study on the critical state of herd behavior in decision-making of the crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    13. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    14. Liu, Yu & Wang, Weijie & Huang, Hong-Zhong & Li, Yanfeng & Yang, Yuanjian, 2014. "A new simulation model for assessing aircraft emergency evacuation considering passenger physical characteristics," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 187-197.
    15. Liu, Xuan & Song, Weiguo & Zhang, Jun, 2009. "Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2717-2726.
    16. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Route choice in the pedestrian evacuation: Microscopic formulation based on visual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    17. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    18. Lei, Wenjun & Li, Angui & Gao, Ran & Zhou, Ning & Mei, Sen & Tian, Zhenguo, 2012. "Experimental study and numerical simulation of evacuation from a dormitory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5189-5196.
    19. Gao, Jin & Zhang, Jingjing & He, Jun & Gong, Jinghai & Zhao, Jincheng, 2020. "Experiment and simulation of pedestrian’s behaviors during evacuation in an office," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    20. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani & Alhalabi, Wael, 2014. "Modeling framework for optimal evacuation of large-scale crowded pedestrian facilities," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1105-1118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:24-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.