IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v117y2013icp30-39.html
   My bibliography  Save this article

Evaluation of the adequacy of maintenance tasks using the failure consequences of railroad vehicles

Author

Listed:
  • Kim, Jaehoon
  • Jeong, Hyun- Yong

Abstract

The purpose of this study is to improve the efficiency, reliability and safety related to railroad maintenance tasks through an evaluation of the consequences of failures. The brake system was selected based on the failure data obtained from railroad vehicles in operation as one of the safety systems in railroad vehicles. The failure causes, failure effects, and the criticality of the failure mode were drawn for 62 failure modes of the braking system through the use of an FMECA for the 30 sub-devices having primary functions. The various maintenance tasks for the braking system were categorized into the 62 failure modes and failure consequences using the FMECA and the logic of maintenance decisions. Braking systems manufactured by the same manufacturer and operated by two different operators were studied in an effort to analyze preventive maintenance and to evaluate the adequacy of preventive maintenance tasks for the 62 failure modes. Based on results of the evaluation of these preventive maintenance tasks, new maintenance tasks were proposed, and concrete cost-cutting effects were determined from the calculation of the maintenance time and expected costs, using a preventive maintenance template developed specifically for railroad vehicles.

Suggested Citation

  • Kim, Jaehoon & Jeong, Hyun- Yong, 2013. "Evaluation of the adequacy of maintenance tasks using the failure consequences of railroad vehicles," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 30-39.
  • Handle: RePEc:eee:reensy:v:117:y:2013:i:c:p:30-39
    DOI: 10.1016/j.ress.2013.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013000781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shalev, Dan M. & Tiran, Joseph, 2007. "Condition-based fault tree analysis (CBFTA): A new method for improved fault tree analysis (FTA), reliability and safety calculations," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1231-1241.
    2. Zio, Enrico & Marella, Marco & Podofillini, Luca, 2007. "Importance measures-based prioritization for improving the performance of multi-state systems: application to the railway industry," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1303-1314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jintao Liu & Keping Li & Wei Zheng & Jiebei Zhu, 2019. "An importance order analysis method for causes of railway signaling system hazards based on complex networks," Journal of Risk and Reliability, , vol. 233(4), pages 567-579, August.
    2. Yutao Yan & Zhongqiang Luo & Zhenyu Liu & Zhibo Liu, 2023. "Risk Assessment Analysis of Multiple Failure Modes Using the Fuzzy Rough FMECA Method: A Case of FACDG," Mathematics, MDPI, vol. 11(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Macchi, Marco & Garetti, Marco & Centrone, Domenico & Fumagalli, Luca & Piero Pavirani, Gian, 2012. "Maintenance management of railway infrastructures based on reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 71-83.
    3. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    4. He, Rui & Zhu, Jingyu & Chen, Guoming & Tian, Zhigang, 2022. "A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Huseby, Arne B. & Natvig, Bent, 2013. "Discrete event simulation methods applied to advanced importance measures of repairable components in multistate network flow systems," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 186-198.
    6. Zhang, Yimin & Shortle, John & Sherry, Lance, 2015. "Methodology for collision risk assessment of an airspace flow corridor concept," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 444-455.
    7. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    8. Darwish, Molham & Almouahed, Shaban & de Lamotte, Florent, 2017. "The integration of expert-defined importance factors to enrich Bayesian Fault Tree Analysis," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 81-90.
    9. Rocco, Claudio M. & Moronta, José & Ramirez-Marquez, José E. & Barker, Kash, 2017. "Effects of multi-state links in network community detection," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 46-56.
    10. Whitson, John C. & Ramirez-Marquez, Jose Emmanuel, 2009. "Resiliency as a component importance measure in network reliability," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1685-1693.
    11. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Baroud, Hiba & Barker, Kash, 2018. "A Bayesian kernel approach to modeling resilience-based network component importance," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 10-19.
    13. Lyu, Dong & Si, Shubin, 2020. "Dynamic importance measure for the K-out-of-n: G system under repeated random load," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    14. Guozhen Xiong & Chi Zhang & Fei Zhou, 2017. "A robust reliability redundancy allocation problem under abnormal external failures guided by a new importance measure," Journal of Risk and Reliability, , vol. 231(2), pages 180-199, April.
    15. He, Zhichao & Wang, Yanhui & Xia, Weifu & Shen, Yue & Hao, Yucheng & Ren, Qiuyang, 2023. "A method for reliability assessment of complex electromechanical system based on improved network connectivity entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    16. Natvig, Bent & Huseby, Arne B. & Reistadbakk, Mads O., 2011. "Measures of component importance in repairable multistate systems—a numerical study," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1680-1690.
    17. Sarhan, Ammar M., 2009. "Reliability equivalence factors of a general series–parallel system," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 229-236.
    18. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    20. Xingyu Xiao & Jingang Liang & Jiejuan Tong & Haitao Wang, 2024. "Emergency Decision Support Techniques for Nuclear Power Plants: Current State, Challenges, and Future Trends," Energies, MDPI, vol. 17(10), pages 1-35, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:117:y:2013:i:c:p:30-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.