IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i2p229-236.html
   My bibliography  Save this article

Reliability equivalence factors of a general series–parallel system

Author

Listed:
  • Sarhan, Ammar M.

Abstract

The equivalence of different designs of a general series–parallel system is investigated in this paper based on the system reliability function and system mean time to failure. The system components are assumed to be independent and their lives to have exponential distributions. Two types of reliability equivalence factors of the system are derived. The results presented here generalize those given in the literature. Numerical studies are introduced to illustrate how the theoretical results obtained in this paper can be applied.

Suggested Citation

  • Sarhan, Ammar M., 2009. "Reliability equivalence factors of a general series–parallel system," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 229-236.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:229-236
    DOI: 10.1016/j.ress.2008.02.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832008000690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2008.02.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramirez-Marquez, Jose Emmanuel & Coit, David W., 2007. "Multi-state component criticality analysis for reliability improvement in multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1608-1619.
    2. Ascher, Harold, 2007. "Different insights for improving part and system reliability obtained from exactly same DFOM “failure numbersâ€," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 552-559.
    3. Kumar, Saurabh & Chattopadhyay, Gopi & Kumar, Uday, 2007. "Reliability improvement through alternative designs—A case study," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 983-991.
    4. Zio, Enrico & Marella, Marco & Podofillini, Luca, 2007. "Importance measures-based prioritization for improving the performance of multi-state systems: application to the railway industry," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1303-1314.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed T. Ramadan & Osama Abdulaziz Alamri & Ahlam H. Tolba, 2024. "Reliability Assessment of Bridge Structure Using Bilal Distribution," Mathematics, MDPI, vol. 12(10), pages 1-18, May.
    2. Ahlam H. Tolba & Osama Abdulaziz Alamri & Hanan Baaqeel, 2024. "Assessing the Bridge Structure’s System Reliability Utilizing the Generalized Unit Half Logistic Geometric Distribution," Mathematics, MDPI, vol. 12(19), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huseby, Arne B. & Natvig, Bent, 2013. "Discrete event simulation methods applied to advanced importance measures of repairable components in multistate network flow systems," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 186-198.
    2. Natvig, Bent & Huseby, Arne B. & Reistadbakk, Mads O., 2011. "Measures of component importance in repairable multistate systems—a numerical study," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1680-1690.
    3. Baroud, Hiba & Barker, Kash & Ramirez-Marquez, Jose E. & Rocco S., Claudio M., 2014. "Importance measures for inland waterway network resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 55-67.
    4. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    5. Si, Shubin & Levitin, Gregory & Dui, Hongyan & Sun, Shudong, 2014. "Importance analysis for reconfigurable systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 72-80.
    6. Rocco, Claudio M. & Moronta, José & Ramirez-Marquez, José E. & Barker, Kash, 2017. "Effects of multi-state links in network community detection," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 46-56.
    7. Whitson, John C. & Ramirez-Marquez, Jose Emmanuel, 2009. "Resiliency as a component importance measure in network reliability," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1685-1693.
    8. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Dui, Hongyan & Li, Shumin & Xing, Liudong & Liu, Hanlin, 2019. "System performance-based joint importance analysis guided maintenance for repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 162-175.
    10. Lin, Yi-Kuei & Fiondella, Lance & Chang, Ping-Chen, 2013. "Quantifying the impact of correlated failures on system reliability by a simulation approach," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 32-40.
    11. Yi-Kuei Lin & Cheng-Fu Huang & Chin-Chia Chang, 2022. "Reliability of spare routing via intersectional minimal paths within budget and time constraints by simulation," Annals of Operations Research, Springer, vol. 312(1), pages 345-368, May.
    12. Song, Xiaogang & Zhai, Zhengjun & Liu, Yidong & Han, Jie, 2018. "A stochastic approach for the reliability evaluation of multi-state systems with dependent components," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 257-266.
    13. Ossai, Chinedu I., 2019. "Remaining useful life estimation for repairable multi-state components subjected to multiple maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 142-151.
    14. Dui, Hongyan & Si, Shubin & Yam, Richard C.M., 2018. "Importance measures for optimal structure in linear consecutive-k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 339-350.
    15. Mohammad Nadjafi & Mohammad Ali Farsi & Hossein Jabbari, 2017. "Reliability analysis of multi-state emergency detection system using simulation approach based on fuzzy failure rate," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 532-541, September.
    16. Lai, Chyh-Ming & Yeh, Wei-Chang, 2016. "Two-stage simplified swarm optimization for the redundancy allocation problem in a multi-state bridge system," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 148-158.
    17. Dui, Hongyan & Si, Shubin & Yam, Richard C.M., 2017. "A cost-based integrated importance measure of system components for preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 98-104.
    18. Uday, Payuna & Chandrahasa, Rakshit & Marais, Karen, 2019. "System Importance Measures: Definitions and Application to System-of-Systems Analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    19. Xiaoyan Zhu & Way Kuo, 2014. "Importance measures in reliability and mathematical programming," Annals of Operations Research, Springer, vol. 212(1), pages 241-267, January.
    20. Si, Shubin & Levitin, Gregory & Dui, Hongyan & Sun, Shudong, 2013. "Component state-based integrated importance measure for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 75-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:2:p:229-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.