IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v150y2016icp35-43.html
   My bibliography  Save this article

Reliability evaluation of linear multi-state consecutively-connected systems constrained by m consecutive and n total gaps

Author

Listed:
  • Yu, Huan
  • Yang, Jun
  • Peng, Rui
  • Zhao, Yu

Abstract

This paper extends the linear multi-state consecutively-connected system (LMCCS) to the case of LMCCS-MN, where MN denotes the dual constraints of m consecutive gaps and n total gaps. All the nodes are distributed along a line and form a sequence. The distances between the adjacent nodes are usually non-uniform. The nodes except the last one can contain statistically independent multi-state connection elements (MCEs). Each MCE can provide a connection between the node at which it is located and the next nodes along the sequence. The LMCCS-MN fails if it meets either of the two constraints. The universal generating function technique is adopted to evaluate the system reliability. The optimal allocations of LMCCS-MN with two different types of failures are solved by genetic algorithm. Finally, two examples are given for the demonstration of the proposed model.

Suggested Citation

  • Yu, Huan & Yang, Jun & Peng, Rui & Zhao, Yu, 2016. "Reliability evaluation of linear multi-state consecutively-connected systems constrained by m consecutive and n total gaps," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 35-43.
  • Handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:35-43
    DOI: 10.1016/j.ress.2016.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016000193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng, Rui & Zhai, Qingqing & Xing, Liudong & Yang, Jun, 2014. "Reliability of demand-based phased-mission systems subject to fault level coverage," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 18-25.
    2. Li, Y.F. & Peng, R., 2014. "Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 47-57.
    3. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    4. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2015. "Linear multistate consecutively-connected systems subject to a constrained number of gaps," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 246-252.
    5. Macchi, Marco & Garetti, Marco & Centrone, Domenico & Fumagalli, Luca & Piero Pavirani, Gian, 2012. "Maintenance management of railway infrastructures based on reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 71-83.
    6. Levitin, Gregory, 2003. "Optimal allocation of multi-state elements in linear consecutively connected systems with vulnerable nodes," European Journal of Operational Research, Elsevier, vol. 150(2), pages 406-419, October.
    7. Yu, Huan & Yang, Jun & Mo, Huadong, 2014. "Reliability analysis of repairable multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 90-96.
    8. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, June.
    9. Ramirez-Marquez, Jose Emmanuel & Levitin, Gregory, 2008. "Algorithm for estimating reliability confidence bounds of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1231-1243.
    10. Rui Peng & Min Xie & Szu Ng & Gregory Levitin, 2012. "Element maintenance and allocation for linear consecutively connected systems," IISE Transactions, Taylor & Francis Journals, vol. 44(11), pages 964-973.
    11. Xing, Liudong & Amari, Suprasad V. & Wang, Chaonan, 2012. "Reliability of k-out-of-n systems with phased-mission requirements and imperfect fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 45-50.
    12. Zio, Enrico & Marella, Marco & Podofillini, Luca, 2007. "Importance measures-based prioritization for improving the performance of multi-state systems: application to the railway industry," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1303-1314.
    13. Levitin, Gregory & Xing, Liudong & Yu, Shengji, 2014. "Optimal connecting elements allocation in linear consecutively-connected systems with phased mission and common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 85-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xing, Liudong & Levitin, Gregory, 2018. "Connectivity modeling and optimization of linear consecutively connected systems with repairable connecting elements," European Journal of Operational Research, Elsevier, vol. 264(2), pages 732-741.
    2. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    3. Jun Wang & Yuyang Wang & Yuqiang Fu, 2023. "Joint Optimization of Condition-Based Maintenance and Performance Control for Linear Multi-State Consecutively Connected Systems," Mathematics, MDPI, vol. 11(12), pages 1-19, June.
    4. Patricia Pascual-Ortigosa & Eduardo Sáenz-de-Cabezón, 2021. "Algebraic Analysis of Variants of Multi-State k -out-of- n Systems," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
    5. Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
    6. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    7. Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.
    8. Gao, Guibing & Wang, Junshen & Yue, Wenhui & Ou, Wenchu, 2020. "Structural-vulnerability assessment of reconfigurable manufacturing system based on universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    9. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Connectivity evaluation and optimal service centers allocation in repairable linear consecutively connected systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 187-193.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Connectivity evaluation and optimal service centers allocation in repairable linear consecutively connected systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 187-193.
    2. Xing, Liudong & Levitin, Gregory, 2018. "Connectivity modeling and optimization of linear consecutively connected systems with repairable connecting elements," European Journal of Operational Research, Elsevier, vol. 264(2), pages 732-741.
    3. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Consecutively connected systems with unreliable resource generators and storages," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    5. Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.
    6. Wang, Guanjun & Duan, Fengjun & Zhou, Yifan, 2018. "Reliability evaluation of multi-state series systems with performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 58-63.
    7. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    8. Li, Y.F. & Peng, R., 2014. "Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 47-57.
    9. Hui Xiao & Minhao Cao & Gang Kou & Xiaojun Yuan, 2021. "Optimal element allocation and sequencing of multi-state series systems with two levels of performance sharing," Journal of Risk and Reliability, , vol. 235(2), pages 282-292, April.
    10. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    11. Peng, Rui & Mo, Huadong & Xie, Min & Levitin, Gregory, 2013. "Optimal structure of multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 18-25.
    12. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2015. "Probabilistic common cause failures in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 53-60.
    13. Cheng, Chen & Yang, Jun & Li, Lei, 2020. "Reliability assessment of multi-state phased mission systems with common bus performance sharing considering transmission loss and performance storage," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    14. Yu, Huan & Yang, Jun & Mo, Huadong, 2014. "Reliability analysis of repairable multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 90-96.
    15. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2017. "Optimal arrangement of connecting elements in linear consecutively connected systems with heterogeneous warm standby groups," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 395-401.
    17. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Dai, Yuanshun, 2016. "Optimal task partition and state-dependent loading in heterogeneous two-element work sharing system," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 97-108.
    18. Faghih-Roohi, Shahrzad & Xie, Min & Ng, Kien Ming & Yam, Richard C.M., 2014. "Dynamic availability assessment and optimal component design of multi-state weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 57-62.
    19. Su, Peng & Wang, Guanjun & Duan, Fengjun, 2020. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    20. Jia, Heping & Ding, Yi & Peng, Rui & Liu, Hanlin & Song, Yonghua, 2020. "Reliability assessment and activation sequence optimization of non-repairable multi-state generation systems considering warm standby," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:150:y:2016:i:c:p:35-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.