IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v112y2013icp120-128.html
   My bibliography  Save this article

The failure rate dynamics in heterogeneous populations

Author

Listed:
  • Cha, Ji Hwan
  • Finkelstein, Maxim

Abstract

Most populations encountered in real world are heterogeneous. In reliability applications, the mixture (observed) failure rate, obviously, can be considered as a measure of ‘average’ quality in these populations. However, in addition to this average measure, some variability characteristics for failure rates can be very helpful in describing the time-dependent changes in quality of heterogeneous populations. In this paper, we discuss variance and the coefficient of variation of the corresponding random failure rate as variability measures for items in heterogeneous populations. Furthermore, there is often a risk that items of poor quality are selected for important missions. Therefore, along with the ‘average quality’ of a population, more ‘conservative’ quality measures should be also defined and studied. For this purpose, we propose the percentile and the tail-mixture of the failure rates as the corresponding conservative measures. Some illustrative examples are given.

Suggested Citation

  • Cha, Ji Hwan & Finkelstein, Maxim, 2013. "The failure rate dynamics in heterogeneous populations," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 120-128.
  • Handle: RePEc:eee:reensy:v:112:y:2013:i:c:p:120-128
    DOI: 10.1016/j.ress.2012.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012002426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cha, Ji Hwan & Finkelstein, Maxim, 2010. "Burn-in by environmental shocks for two ordered subpopulations," European Journal of Operational Research, Elsevier, vol. 206(1), pages 111-117, October.
    2. Maxim Finkelstein, 2009. "Understanding the shape of the mixture failure rate (with engineering and demographic applications)," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 643-663, November.
    3. Maxim S. Finkelstein, 2009. "Understanding the shape of the mixture failure rate (with engineering and demographic applications)," MPIDR Working Papers WP-2009-031, Max Planck Institute for Demographic Research, Rostock, Germany.
    4. Finkelstein, Maxim, 2007. "Shocks in homogeneous and heterogeneous populations," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 569-574.
    5. Y. Kebir, 1991. "On hazard rate processes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(6), pages 865-876, December.
    6. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, February.
    7. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2009. "Balancing burn-in and mission times in environments with catastrophic and repairable failures," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1314-1321.
    8. Cha, Ji Hwan & Finkelstein, Maxim, 2011. "Burn-in and the performance quality measures in heterogeneous populations," European Journal of Operational Research, Elsevier, vol. 210(2), pages 273-280, April.
    9. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    10. Jie Mi, 1996. "Minimizing Some Cost Functions Related to Both Burn-In and Field Use," Operations Research, INFORMS, vol. 44(3), pages 497-500, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Kunsong & Chen, Yunxia & Xu, Dan, 2017. "Reliability assessment model considering heterogeneous population in a multiple stresses accelerated test," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 134-143.
    2. Nil Kamal Hazra & Maxim Finkelstein, 2018. "On stochastic comparisons of finite mixtures for some semiparametric families of distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 988-1006, December.
    3. Barmalzan, Ghobad & Kosari, Sajad & Zhang, Yiying, 2021. "On stochastic comparisons of finite α-mixture models," Statistics & Probability Letters, Elsevier, vol. 173(C).
    4. Hal Caswell, 2014. "A matrix approach to the statistics of longevity in heterogeneous frailty models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(19), pages 553-592.
    5. Raju Bhakta & Pradip Kundu & Suchandan Kayal & Morad Alizadeh, 2024. "Stochastic Orderings between Two Finite Mixtures with Inverted-Kumaraswamy Distributed Components," Mathematics, MDPI, vol. 12(6), pages 1-20, March.
    6. Omid Shojaee & Manoochehr Babanezhad, 2023. "On some stochastic comparisons of arithmetic and geometric mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(5), pages 499-515, July.
    7. Slimacek, Vaclav & Lindqvist, Bo Henry, 2016. "Nonhomogeneous Poisson process with nonparametric frailty," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 14-23.
    8. XiaoFei, Lu & Min, Liu, 2014. "Hazard rate function in dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 50-60.
    9. Cha, Ji Hwan & Finkelstein, Maxim, 2014. "Some notes on unobserved parameters (frailties) in reliability modeling," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 99-103.
    10. J. Jarrahiferiz & M. Kayid & S. Izadkhah, 2019. "Stochastic properties of a weighted frailty model," Statistical Papers, Springer, vol. 60(1), pages 53-72, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cha, Ji Hwan & Finkelstein, Maxim, 2011. "Burn-in and the performance quality measures in heterogeneous populations," European Journal of Operational Research, Elsevier, vol. 210(2), pages 273-280, April.
    2. Ji Hwan Cha & Maxim Finkelstein, 2012. "Burn-in and the performance quality measures in continuous heterogeneous populations," Journal of Risk and Reliability, , vol. 226(4), pages 417-425, August.
    3. M Shafiee & M Finkelstein & S Chukova, 2011. "Burn-in and imperfect preventive maintenance strategies for warranted products," Journal of Risk and Reliability, , vol. 225(2), pages 211-218, June.
    4. Cha, Ji Hwan & Pulcini, Gianpaolo, 2016. "Optimal burn-in procedure for mixed populations based on the device degradation process history," European Journal of Operational Research, Elsevier, vol. 251(3), pages 988-998.
    5. Maxim S. Finkelstein, 2011. "On ordered subpopulations and population mortality at advanced ages," MPIDR Working Papers WP-2011-022, Max Planck Institute for Demographic Research, Rostock, Germany.
    6. J H Cha & M Finkelstein, 2012. "Burn-in via shocks for avoiding large risks," Journal of Risk and Reliability, , vol. 226(3), pages 318-326, June.
    7. Cha, Ji Hwan & Finkelstein, Maxim, 2015. "Environmental stress screening modelling, analysis and optimization," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 149-155.
    8. Finkelstein, Maxim, 2012. "On ordered subpopulations and population mortality at advanced ages," Theoretical Population Biology, Elsevier, vol. 81(4), pages 292-299.
    9. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2021. "Optimal warranty policy with inspection for heterogeneous, stochastically degrading items," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1142-1152.
    10. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "Justifying the Gompertz curve of mortality via the generalized Polya process of shocks," Theoretical Population Biology, Elsevier, vol. 109(C), pages 54-62.
    11. Ting Li & James Anderson, 2013. "Shaping human mortality patterns through intrinsic and extrinsic vitality processes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(12), pages 341-372.
    12. Ji Cha & Maxim S. Finkelstein, 2009. "Stochastically ordered subpopulations and optimal burn-in procedure," MPIDR Working Papers WP-2009-030, Max Planck Institute for Demographic Research, Rostock, Germany.
    13. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A reliability system under different types of shock governed by a Markovian arrival process and maintenance policy K," European Journal of Operational Research, Elsevier, vol. 235(3), pages 636-642.
    14. Maxim S. Finkelstein, 2009. "Understanding the shape of the mixture failure rate (with engineering and demographic applications)," MPIDR Working Papers WP-2009-031, Max Planck Institute for Demographic Research, Rostock, Germany.
    15. F. G. Badía & Ji Hwan Cha, 2017. "On bending (down and up) property of reliability measures in mixtures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 455-482, May.
    16. Lai, Chin-Diew & Izadi, Muhyiddin, 2012. "Generalized logistic frailty model," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1969-1977.
    17. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "Matrix stochastic analysis of the maintainability of a machine under shocks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 11-17.
    18. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    19. Reza Barabadi & Mohammad Ataei & Reza Khalokakaie & Ali Nouri Qarahasanlou, 2021. "Spare-part management in a heterogeneous environment," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    20. Nil Kamal Hazra & Maxim Finkelstein, 2018. "On stochastic comparisons of finite mixtures for some semiparametric families of distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 988-1006, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:112:y:2013:i:c:p:120-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.