IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v31y2014i19.html
   My bibliography  Save this article

A matrix approach to the statistics of longevity in heterogeneous frailty models

Author

Listed:
  • Hal Caswell

    (Universiteit van Amsterdam)

Abstract

Background: The gamma-Gompertz model is a fixed frailty model in which baseline mortality increases exponentially with age, frailty has a proportional effect on mortality, and frailty at birth follows a gamma distribution. Mortality selects against the more frail, so the marginal mortality rate decelerates, eventually reaching an asymptote. The gamma-Gompertz is one of a wider class of frailty models, characterized by the choice of baseline mortality, effects of frailty, distributions of frailty, and assumptions about the dynamics of frailty. Objective: To develop a matrix model to compute all the statistical properties of longevity from the gamma-Gompertz and related models. Methods: I use the vec-permutation matrix formulation to develop a model in which individuals are jointly classified by age and frailty. The matrix is used to project the age and frailty dynamics of a cohort and the fundamental matrix is used to obtain the statistics of longevity. Results: The model permits calculation of the mean, variance, coefficient of variation, skewness and all moments of longevity, the marginal mortality and survivorship functions, the dynamics of the frailty distribution, and other quantities. The matrix formulation extends naturally to other frailty models. I apply the analysis to the gamma-Gompertz model (for humans and laboratory animals), the gamma-Makeham model, and the gamma-Siler model, and to a hypothetical dynamic frailty model characterized by diffusion of frailty with reflecting boundaries. The matrix model permits partitioning the variance in longevity into components due to heterogeneity and to individual stochasticity. In several published human data sets, heterogeneity accounts for less than 10% of the variance in longevity. In laboratory populations of five invertebrate animal species, heterogeneity accounts for 46% to 83% of the total variance in longevity.

Suggested Citation

  • Hal Caswell, 2014. "A matrix approach to the statistics of longevity in heterogeneous frailty models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(19), pages 553-592.
  • Handle: RePEc:dem:demres:v:31:y:2014:i:19
    DOI: 10.4054/DemRes.2014.31.19
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol31/19/31-19.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2014.31.19?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hal Caswell, 2008. "Perturbation analysis of nonlinear matrix population models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 18(3), pages 59-116.
    2. Michal Engelman & Hal Caswell & Emily Agree, 2014. "Why do lifespan variability trends for the young and old diverge? A perturbation analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(48), pages 1367-1396.
    3. Anatoli Yashin & Ivan Iachine & Alexander Begun, 2000. "Mortality modeling: A review," Mathematical Population Studies, Taylor & Francis Journals, vol. 8(4), pages 305-332.
    4. repec:cai:popine:popu_p1976_31n3_0692 is not listed on IDEAS
    5. Trifon Missov, 2013. "Gamma-Gompertz life expectancy at birth," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(9), pages 259-270.
    6. Cha, Ji Hwan & Finkelstein, Maxim, 2013. "The failure rate dynamics in heterogeneous populations," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 120-128.
    7. Trifon I. Missov & Maxim S. Finkelstein, 2011. "Admissible mixing distributions for a general class of mixture survival models with known asymptotics," MPIDR Working Papers WP-2011-004, Max Planck Institute for Demographic Research, Rostock, Germany.
    8. Roger Pradel, 2005. "Multievent: An Extension of Multistate Capture–Recapture Models to Uncertain States," Biometrics, The International Biometric Society, vol. 61(2), pages 442-447, June.
    9. Hal Caswell, 2011. "Beyond R0: Demographic Models for Variability of Lifetime Reproductive Output," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-21, June.
    10. John P. Klein & Corey Pelz & Mei-jie Zhang, 1999. "Modeling Random Effects for Censored Data by a Multivariate Normal Regression Model," Biometrics, The International Biometric Society, vol. 55(2), pages 497-506, June.
    11. Missov, Trifon I. & Finkelstein, Maxim, 2011. "Admissible mixing distributions for a general class of mixture survival models with known asymptotics," Theoretical Population Biology, Elsevier, vol. 80(1), pages 64-70.
    12. James W. Vaupel, 2010. "Biodemography of human ageing," Nature, Nature, vol. 464(7288), pages 536-542, March.
    13. Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
    14. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silke van Daalen & Hal Caswell, 2015. "Lifetime reproduction and the second demographic transition: Stochasticity and individual variation," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(20), pages 561-588.
    2. Hartemink, Nienke & Missov, Trifon I. & Caswell, Hal, 2017. "Stochasticity, heterogeneity, and variance in longevity in human populations," Theoretical Population Biology, Elsevier, vol. 114(C), pages 107-116.
    3. Coste, Christophe F.D. & Pavard, Samuel, 2020. "Analysis of a multitrait population projection matrix reveals the evolutionary and demographic effects of a life history trade-off," Ecological Modelling, Elsevier, vol. 418(C).
    4. Coste, Christophe F.D. & Austerlitz, Frédéric & Pavard, Samuel, 2017. "Trait level analysis of multitrait population projection matrices," Theoretical Population Biology, Elsevier, vol. 116(C), pages 47-58.
    5. Hal Caswell & Silke van Daalen, 2021. "Healthy longevity from incidence-based models: More kinds of health than stars in the sky," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(13), pages 397-452.
    6. van Daalen, Silke & Caswell, Hal, 2020. "Variance as a life history outcome: Sensitivity analysis of the contributions of stochasticity and heterogeneity," Ecological Modelling, Elsevier, vol. 417(C).
    7. Hal Caswell, 2020. "The formal demography of kinship II: Multistate models, parity, and sibship," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 42(38), pages 1097-1146.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James W. Vaupel & Trifon Missov, 2014. "Unobserved population heterogeneity," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(22), pages 659-686.
    2. Cha, Ji Hwan & Finkelstein, Maxim, 2014. "Some notes on unobserved parameters (frailties) in reliability modeling," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 99-103.
    3. Missov, Trifon I. & Lenart, Adam, 2013. "Gompertz–Makeham life expectancies: Expressions and applications," Theoretical Population Biology, Elsevier, vol. 90(C), pages 29-35.
    4. Hartemink, Nienke & Missov, Trifon I. & Caswell, Hal, 2017. "Stochasticity, heterogeneity, and variance in longevity in human populations," Theoretical Population Biology, Elsevier, vol. 114(C), pages 107-116.
    5. Yann Le Cunff & Annette Baudisch & Khashayar Pakdaman, 2013. "How Evolving Heterogeneity Distributions of Resource Allocation Strategies Shape Mortality Patterns," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-14, January.
    6. Virginia Zarulli, 2016. "Unobserved Heterogeneity of Frailty in the Analysis of Socioeconomic Differences in Health and Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 32(1), pages 55-72, February.
    7. Giambattista Salinari & Gustavo De Santis, 2020. "One or more rates of ageing? The extended gamma-Gompertz model (EGG)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 211-236, June.
    8. Ting Li & James Anderson, 2013. "Shaping human mortality patterns through intrinsic and extrinsic vitality processes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(12), pages 341-372.
    9. Maxim S. Finkelstein, 2011. "On ordered subpopulations and population mortality at advanced ages," MPIDR Working Papers WP-2011-022, Max Planck Institute for Demographic Research, Rostock, Germany.
    10. Elizabeth Wrigley-Field, 2014. "Mortality Deceleration and Mortality Selection: Three Unexpected Implications of a Simple Model," Demography, Springer;Population Association of America (PAA), vol. 51(1), pages 51-71, February.
    11. Finkelstein, Maxim, 2012. "On ordered subpopulations and population mortality at advanced ages," Theoretical Population Biology, Elsevier, vol. 81(4), pages 292-299.
    12. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "Justifying the Gompertz curve of mortality via the generalized Polya process of shocks," Theoretical Population Biology, Elsevier, vol. 109(C), pages 54-62.
    13. Adriaan Kalwij, 2014. "An empirical analysis of the importance of controlling for unobserved heterogeneity when estimating the income-mortality gradient," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(30), pages 913-940.
    14. Caswell, Hal & Shyu, Esther, 2012. "Sensitivity analysis of periodic matrix population models," Theoretical Population Biology, Elsevier, vol. 82(4), pages 329-339.
    15. van Daalen, Silke & Caswell, Hal, 2020. "Variance as a life history outcome: Sensitivity analysis of the contributions of stochasticity and heterogeneity," Ecological Modelling, Elsevier, vol. 417(C).
    16. Lindholm, Mathias, 2017. "A note on the connection between some classical mortality laws and proportional frailty," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 76-82.
    17. Silke van Daalen & Hal Caswell, 2015. "Lifetime reproduction and the second demographic transition: Stochasticity and individual variation," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(20), pages 561-588.
    18. Hui Zheng, 2014. "Aging in the Context of Cohort Evolution and Mortality Selection," Demography, Springer;Population Association of America (PAA), vol. 51(4), pages 1295-1317, August.
    19. Castellares, Fredy & Patrício, Silvio C. & Lemonte, Artur J. & Queiroz, Bernardo L., 2020. "On closed-form expressions to Gompertz–Makeham life expectancy," Theoretical Population Biology, Elsevier, vol. 134(C), pages 53-60.
    20. M S Finkelstein, 2008. "Reliability modelling for biological ageing," Journal of Risk and Reliability, , vol. 222(1), pages 1-6, March.

    More about this item

    Keywords

    frailty; mortality; longevity; heterogeneity; Markov chains; individual stochasticity;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:31:y:2014:i:19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.