IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v235y2014i3p636-642.html
   My bibliography  Save this article

A reliability system under different types of shock governed by a Markovian arrival process and maintenance policy K

Author

Listed:
  • Montoro-Cazorla, Delia
  • Pérez-Ocón, Rafael

Abstract

A reliability system subject to shocks producing damage and failure is considered. The source of shocks producing failures is governed by a Markovian arrival process. All the shocks produce deterioration and some of them failures, which can be repairable or non-repairable. Repair times are governed by a phase-type distribution. The number of deteriorating shocks that the system can stand is fixed. After a fatal failure the system is replaced by another identical one. For this model the availability, the reliability, and the rate of occurrence of the different types of failures are calculated. It is shown that this model extends other previously published in the literature.

Suggested Citation

  • Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A reliability system under different types of shock governed by a Markovian arrival process and maintenance policy K," European Journal of Operational Research, Elsevier, vol. 235(3), pages 636-642.
  • Handle: RePEc:eee:ejores:v:235:y:2014:i:3:p:636-642
    DOI: 10.1016/j.ejor.2014.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714000423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2011. "Two shock and wear systems under repair standing a finite number of shocks," European Journal of Operational Research, Elsevier, vol. 214(2), pages 298-307, October.
    2. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2012. "A shock and wear system under environmental conditions subject to internal failures, repair, and replacement," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 55-61.
    3. Montoro-Cazorla, Delia & Perez-Ocon, Rafael, 2006. "Replacement times and costs in a degrading system with several types of failure: The case of phase-type holding times," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1193-1209, December.
    4. Finkelstein, Maxim, 2007. "Shocks in homogeneous and heterogeneous populations," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 569-574.
    5. Frostig, Esther & Kenzin, Moshe, 2009. "Availability of inspected systems subject to shocks - A matrix algorithmic approach," European Journal of Operational Research, Elsevier, vol. 193(1), pages 168-183, February.
    6. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael & del Carmen Segovia, Maria, 2009. "Replacement policy in a system under shocks following a Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 497-502.
    7. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, June.
    8. Kenzin, Moshe & Frostig, Esther, 2009. "M out of n inspected systems subject to shocks in random environment," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1322-1330.
    9. Søren Asmussen, 2000. "Matrix‐analytic Models and their Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 193-226, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eryilmaz, Serkan, 2017. "δ-shock model based on Polya process and its optimal replacement policy," European Journal of Operational Research, Elsevier, vol. 263(2), pages 690-697.
    2. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    3. Ji Hwan Cha & Maxim Finkelstein, 2019. "On some characteristics of quality for systems operating in a random environment," Journal of Risk and Reliability, , vol. 233(2), pages 257-267, April.
    4. Du, Shijia & Zeng, Zhiguo & Cui, Lirong & Kang, Rui, 2017. "Reliability analysis of Markov history-dependent repairable systems with neglected failures," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 134-142.
    5. María Luz Gámiz & Delia Montoro-Cazorla & María del Carmen Segovia-García & Rafael Pérez-Ocón, 2022. "MoMA Algorithm: A Bottom-Up Modeling Procedure for a Modular System under Environmental Conditions," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    6. Zhang, Nan & Fouladirad, Mitra & Barros, Anne, 2019. "Reliability-based measures and prognostic analysis of a K-out-of-N system in a random environment," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1120-1131.
    7. Levitin, Gregory & Finkelstein, Maxim & Li, Yan-Feng, 2020. "Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "Matrix stochastic analysis of the maintainability of a machine under shocks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 11-17.
    2. Ji Hwan Cha & Maxim Finkelstein, 2019. "On some characteristics of quality for systems operating in a random environment," Journal of Risk and Reliability, , vol. 233(2), pages 257-267, April.
    3. Maxim Finkelstein & Gregory Levitin, 2018. "Optimal mission duration for systems subject to shocks and internal failures," Journal of Risk and Reliability, , vol. 232(1), pages 82-91, February.
    4. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "On some properties of shock processes in a ‘natural’ scale," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 104-110.
    5. Ji Hwan Cha & Maxim Finkelstein, 2019. "Optimal preventive maintenance for systems having a continuous output and operating in a random environment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 327-350, July.
    6. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "New shock models based on the generalized Polya process," European Journal of Operational Research, Elsevier, vol. 251(1), pages 135-141.
    7. Ji Hwan Cha & Maxim Finkelstein, 2018. "On a New Shot Noise Process and the Induced Survival Model," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 897-917, September.
    8. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2011. "Two shock and wear systems under repair standing a finite number of shocks," European Journal of Operational Research, Elsevier, vol. 214(2), pages 298-307, October.
    9. Maxim Finkelstein & Gregory Levitin, 2018. "Optimal Mission Duration for Partially Repairable Systems Operating in a Random Environment," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 505-516, June.
    10. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2012. "A shock and wear system under environmental conditions subject to internal failures, repair, and replacement," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 55-61.
    11. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    12. Hazra, Nil Kamal & Finkelstein, Maxim & Cha, Ji Hwan, 2022. "On a hazard (failure) rate process with delays after shocks," Statistics & Probability Letters, Elsevier, vol. 181(C).
    13. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2015. "A shock and wear model with dependence between the interarrival failures," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 339-352.
    14. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    15. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
    16. Ji Hwan Cha & Massimiliano Giorgio, 2018. "Modelling of Marginally Regular Bivariate Counting Process and its Application to Shock Model," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1137-1154, December.
    17. Ji Hwan Cha & Maxim Finkelstein & Gregory Levitin, 2017. "Bivariate preventive maintenance for repairable systems subject to random shocks," Journal of Risk and Reliability, , vol. 231(6), pages 643-653, December.
    18. Liu, Baoliang & Cui, Lirong & Wen, Yanqing & Shen, Jingyuan, 2015. "A cold standby repairable system with working vacations and vacation interruption following Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 1-8.
    19. Maxim Finkelstein & Ji Hwan Cha & Shyamal Ghosh, 2021. "Optimal inspection for missions with a possibility of abortion or switching to a lighter regime," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 722-740, October.
    20. Cha, Ji Hwan & Finkelstein, Maxim, 2018. "On information-based residual lifetime in survival models with delayed failures," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 209-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:235:y:2014:i:3:p:636-642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.