IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v165y2017icp134-143.html
   My bibliography  Save this article

Reliability assessment model considering heterogeneous population in a multiple stresses accelerated test

Author

Listed:
  • Lin, Kunsong
  • Chen, Yunxia
  • Xu, Dan

Abstract

Heterogeneous population, a mixture of weak and strong subpopulations, is inevitable in some multiple stresses accelerated tests. Modeling the reliability of heterogeneous population in an accelerated test differs dramatically from that for a homogeneous setting. In this paper, a multiple stress reliability assessment model with heterogeneous populations is proposed, which includes verifying the presence of heterogeneous population, determining the number of subpopulations and separating populations based on Bayes classifier. The acceleration model structure is then specified, and the effects of different accelerating stresses are analyzed. A practical example is used to demonstrate the accuracy and flexibility of the proposed method. It is shown that reliability assessment without considering heterogeneity is heavily biased, and the sequences of stress sensitivity to different subpopulations are different. We also explain the phenomenon that the pseudo lifetime of smart electricity meter under some milder stress is shorter than that in harsher condition due to opposite effects on degradation characteristics among different stresses, and verify the phenomenon by the enhancement test.

Suggested Citation

  • Lin, Kunsong & Chen, Yunxia & Xu, Dan, 2017. "Reliability assessment model considering heterogeneous population in a multiple stresses accelerated test," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 134-143.
  • Handle: RePEc:eee:reensy:v:165:y:2017:i:c:p:134-143
    DOI: 10.1016/j.ress.2017.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cha, Ji Hwan & Finkelstein, Maxim, 2013. "The failure rate dynamics in heterogeneous populations," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 120-128.
    2. Li, Mingyang & Liu, Jian, 2016. "Bayesian hazard modeling based on lifetime data with latent heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 183-189.
    3. Castet, Jean-Francois & Saleh, Joseph H., 2010. "Single versus mixture Weibull distributions for nonparametric satellite reliability," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 295-300.
    4. Yada Zhu & Elsayed A. Elsayed, 2013. "Design of accelerated life testing plans under multiple stresses," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 468-478, September.
    5. Elmahdy, Emad E., 2015. "A new approach for Weibull modeling for reliability life data analysis," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 708-720.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Liu, Bin & Shi, Yimin & Ng, Hon Keung Tony & Shang, Xiangwen, 2021. "Nonparametric Bayesian reliability analysis of masked data with dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Lu, Biao & Chen, Zhen & Zhao, Xufeng, 2021. "Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Gupta, Sanjib Kumar & Bhattacharya, Debasis, 2022. "Non-parametric estimation of bivariate reliability from incomplete two-dimensional warranty data," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Lin, Kunsong & Chen, Yunxia, 2021. "Analysis of two-dimensional warranty data considering global and local dependence of heterogeneous marginals," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Dan Xu & Jiaolan He & Zhou Yang, 2022. "Reliability prediction based on Birnbaum–Saunders model and its application to smart meter," Annals of Operations Research, Springer, vol. 312(1), pages 519-532, May.
    7. Ekene Gabriel Okafor & Whit Vinson & David Ryan Huitink, 2023. "Effect of Stress Interaction on Multi-Stress Accelerated Life Test Plan: Assessment Based on Particle Swarm Optimization," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    8. Han, David & Bai, Tianyu, 2020. "Design optimization of a simple step-stress accelerated life test – Contrast between continuous and interval inspections with non-uniform step durations," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    9. Jia-Wei Xiang & Zhi-Bo Yang & Jose L Aguilar, 2018. "Structural health monitoring for mechanical structures using multi-sensor data," International Journal of Distributed Sensor Networks, , vol. 14(9), pages 15501477188, September.
    10. Ye, Xuerong & Hu, Yifan & Zheng, Bokai & Chen, Cen & Zhai, Guofu, 2022. "A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. Woo, Seong-woo & Pecht, Michael & O'Neal, Dennis L., 2020. "Reliability design and case study of the domestic compressor subjected to repetitive internal stresses," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    13. Le Liu & Xiao-Yang Li & Enrico Zio & Rui Kang & Tong-Min Jiang, 2017. "Model Uncertainty in Accelerated Degradation Testing Analysis," Post-Print hal-01652218, HAL.
    14. Hunjra, Ahmed Imran & Azam, Muhammad & Bruna, Maria Giuseppina & Verhoeven, Peter & Al-Faryan, Mamdouh Abdulaziz Saleh, 2022. "Sustainable development: The impact of political risk, macroeconomic policy uncertainty and ethnic conflict," International Review of Financial Analysis, Elsevier, vol. 84(C).
    15. Moustafa, Kassem & Hu, Zhen & Mourelatos, Zissimos P. & Baseski, Igor & Majcher, Monica, 2021. "System reliability analysis using component-level and system-level accelerated life testing," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    16. Liu, Di & Wang, Shaoping, 2021. "Reliability estimation from lifetime testing data and degradation testing data with measurement error based on evidential variable and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    17. Yao Liu & Yashun Wang & Zhengwei Fan & Xun Chen & Chunhua Zhang & Yuanyuan Tan, 2020. "A new universal multi-stress acceleration model and multi-parameter estimation method based on particle swarm optimization," Journal of Risk and Reliability, , vol. 234(6), pages 764-778, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Mingyang & Meng, Hongdao & Zhang, Qingpeng, 2017. "A nonparametric Bayesian modeling approach for heterogeneous lifetime data with covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 95-104.
    2. Ducros, Florence & Pamphile, Patrick, 2018. "Bayesian estimation of Weibull mixture in heavily censored data setting," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 453-462.
    3. Altun, Mustafa & Comert, Salih Vehbi, 2016. "A change-point based reliability prediction model using field return data," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 175-184.
    4. Trindade, Graça & Dias, José G. & Ambrósio, Jorge, 2017. "Extracting clusters from aggregate panel data: A market segmentation study," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 277-288.
    5. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    6. Jung, Seunghwa & Choi, Jihwan P., 2019. "Predicting system failure rates of SRAM-based FPGA on-board processors in space radiation environments," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 374-386.
    7. Christian Acal & Juan E. Ruiz-Castro & David Maldonado & Juan B. Roldán, 2021. "One Cut-Point Phase-Type Distributions in Reliability. An Application to Resistive Random Access Memories," Mathematics, MDPI, vol. 9(21), pages 1-13, October.
    8. Wu, Shuo-Jye & Huang, Syuan-Rong, 2017. "Planning two or more level constant-stress accelerated life tests with competing risks," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 1-8.
    9. Xiaowei Dong & Feng Sun & Fangchao Xu & Qi Zhang & Ran Zhou & Liang Zhang & Zhongwei Liang, 2022. "Three-Parameter Estimation Method of Multiple Hybrid Weibull Distribution Based on the EM Optimization Algorithm," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    10. Lin, Kunsong & Chen, Yunxia, 2021. "Analysis of two-dimensional warranty data considering global and local dependence of heterogeneous marginals," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Ekene Gabriel Okafor & Whit Vinson & David Ryan Huitink, 2023. "Effect of Stress Interaction on Multi-Stress Accelerated Life Test Plan: Assessment Based on Particle Swarm Optimization," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    12. Róbert Csalódi & Zoltán Birkner & János Abonyi, 2021. "Learning Interpretable Mixture of Weibull Distributions—Exploratory Analysis of How Economic Development Influences the Incidence of COVID-19 Deaths," Data, MDPI, vol. 6(12), pages 1-11, November.
    13. Cavalcante, C.A.V. & Lopes, R.S. & Scarf, P.A., 2018. "A general inspection and opportunistic replacement policy for one-component systems of variable quality," European Journal of Operational Research, Elsevier, vol. 266(3), pages 911-919.
    14. Omid Shojaee & Manoochehr Babanezhad, 2023. "On some stochastic comparisons of arithmetic and geometric mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(5), pages 499-515, July.
    15. XiaoFei, Lu & Min, Liu, 2014. "Hazard rate function in dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 50-60.
    16. Kowal, Karol, 2022. "Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    17. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Jiang, Renyan & Qi, Faqun & Cao, Yu, 2023. "Relation between aging intensity function and WPP plot and its application in reliability modelling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    19. Damircheli, Mahrad & Fakoor, Mahdi & Yadegari, Hamed, 2020. "Failure assessment logic model (FALM): A new approach for reliability analysis of satellite attitude control subsystem," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    20. Franko, Mitja & Nagode, Marko, 2015. "Probability density function of the equivalent stress amplitude using statistical transformation," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 118-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:165:y:2017:i:c:p:134-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.