IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i5p569-574.html
   My bibliography  Save this article

Shocks in homogeneous and heterogeneous populations

Author

Listed:
  • Finkelstein, Maxim

Abstract

A system subject to a point process of shocks is considered. Shocks occur in accordance with a non-homogeneous Poisson process. Different criterions of system failures are discussed in a homogeneous case. Two natural settings are analyzed. Heterogeneity is modeled by an unobserved univariate random variable (frailty). It is shown that reliability (safety) analysis for a heterogeneous case can differ dramatically from that for a homogeneous setting. A shock burn-in procedure for a heterogeneous population is described. The corresponding bounds for the failure rates are obtained.

Suggested Citation

  • Finkelstein, Maxim, 2007. "Shocks in homogeneous and heterogeneous populations," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 569-574.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:5:p:569-574
    DOI: 10.1016/j.ress.2006.05.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006001165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.05.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Vaupel & Kenneth Manton & Eric Stallard, 1979. "The impact of heterogeneity in individual frailty on the dynamics of mortality," Demography, Springer;Population Association of America (PAA), vol. 16(3), pages 439-454, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2012. "A shock and wear system under environmental conditions subject to internal failures, repair, and replacement," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 55-61.
    2. Delia Montoro-Cazorla & Rafael Pérez-Ocón, 2022. "Analysis of k-Out-of-N-Systems with Different Units under Simultaneous Failures: A Matrix-Analytic Approach," Mathematics, MDPI, vol. 10(11), pages 1-13, June.
    3. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    4. Rezgar Zaki & Abbas Barabadi & Ali Nouri Qarahasanlou & A. H. S. Garmabaki, 2019. "A mixture frailty model for maintainability analysis of mechanical components: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1646-1653, December.
    5. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Heterogeneous standby systems with shocks-driven preventive replacements," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1189-1197.
    6. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin, 2019. "Reliability assessment of man-machine systems subject to mutually dependent machine degradation and human errors," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    7. Finkelstein, Maxim, 2013. "On some comparisons of lifetimes for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 300-304.
    8. Maxim Finkelstein & Gregory Levitin, 2018. "Optimal Mission Duration for Partially Repairable Systems Operating in a Random Environment," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 505-516, June.
    9. Cha, Ji Hwan & Finkelstein, Maxim, 2013. "The failure rate dynamics in heterogeneous populations," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 120-128.
    10. Maxim Finkelstein & Gregory Levitin, 2018. "Optimal mission duration for systems subject to shocks and internal failures," Journal of Risk and Reliability, , vol. 232(1), pages 82-91, February.
    11. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Optimizing availability of heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 137-145.
    12. Nader Ebrahimi & S.N.U.A. Kirmani & Ehsan S. Soofi, 2011. "Predictability of operational processes over finite horizon," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(6), pages 531-545, September.
    13. Che, Haiyang & Zeng, Shengkui & Li, Kehui & Guo, Jianbin, 2022. "Reliability analysis of load-sharing man-machine systems subject to machine degradation, human errors, and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. van der Weide, J.A.M. & Pandey, M.D. & van Noortwijk, J.M., 2010. "Discounted cost model for condition-based maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 236-246.
    15. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "A reliability system under different types of shock governed by a Markovian arrival process and maintenance policy K," European Journal of Operational Research, Elsevier, vol. 235(3), pages 636-642.
    16. Rodrigues, Augusto J.S. & Cavalcante, Cristiano A.V. & Lee, Chi-Guhn, 2024. "A general inspection and replacement policy for protection systems subject to shocks with state dependent effect," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    17. Cha, Ji Hwan & Finkelstein, Maxim, 2016. "On some properties of shock processes in a ‘natural’ scale," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 104-110.
    18. Cha, Ji Hwan & Finkelstein, Maxim, 2014. "Some notes on unobserved parameters (frailties) in reliability modeling," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 99-103.
    19. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2014. "Matrix stochastic analysis of the maintainability of a machine under shocks," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 11-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bagdonavicius, Vilijandas & Nikulin, Mikhail, 2000. "On goodness-of-fit for the linear transformation and frailty models," Statistics & Probability Letters, Elsevier, vol. 47(2), pages 177-188, April.
    2. Yahia Salhi & Pierre-Emmanuel Thérond, 2016. "Age-Specific Adjustment of Graduated Mortality," Working Papers hal-01391285, HAL.
    3. Feehan, Dennis & Wrigley-Field, Elizabeth, 2020. "How do populations aggregate?," SocArXiv 2fkw3, Center for Open Science.
    4. M. K. Lintu & Asha Kamath, 2022. "Performance of recurrent event models on defect proneness data," Annals of Operations Research, Springer, vol. 315(2), pages 2209-2218, August.
    5. Il Do Ha & Maengseok Noh & Youngjo Lee, 2010. "Bias Reduction of Likelihood Estimators in Semiparametric Frailty Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 307-320, June.
    6. Andreas Wienke & Anne M. Herskind & Kaare Christensen & Axel Skytthe & Anatoli I. Yashin, 2002. "The influence of smoking and BMI on heritability in susceptibility to coronary heart disease," MPIDR Working Papers WP-2002-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    7. Filipe Costa Souza & Wilton Bernardino & Silvio C. Patricio, 2024. "How life-table right-censoring affected the Brazilian social security factor: an application of the gamma-Gompertz-Makeham model," Journal of Population Research, Springer, vol. 41(3), pages 1-38, September.
    8. Svetlana V. Ukraintseva & Anatoli I. Yashin, 2005. "Economic progress as cancer risk factor. I: Puzzling facts of cancer epidemiology," MPIDR Working Papers WP-2005-021, Max Planck Institute for Demographic Research, Rostock, Germany.
    9. Silke van Daalen & Hal Caswell, 2015. "Lifetime reproduction and the second demographic transition: Stochasticity and individual variation," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 33(20), pages 561-588.
    10. K. Motarjem & M. Mohammadzadeh & A. Abyar, 2020. "Geostatistical survival model with Gaussian random effect," Statistical Papers, Springer, vol. 61(1), pages 85-107, February.
    11. Schultz, T. Paul, 2010. "Population and Health Policies," Handbook of Development Economics, in: Dani Rodrik & Mark Rosenzweig (ed.), Handbook of Development Economics, edition 1, volume 5, chapter 0, pages 4785-4881, Elsevier.
    12. Xu, Linzhi & Zhang, Jiajia, 2010. "An EM-like algorithm for the semiparametric accelerated failure time gamma frailty model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1467-1474, June.
    13. Carlos Díaz-Venegas, 2014. "Identifying the Confounders of Marginalization and Mortality in Mexico, 2003–2007," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 118(2), pages 851-875, September.
    14. Väinö Kannisto, 2000. "Measuring the compression of mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 3(6).
    15. Jaap H. Abbring & Tim Salimans, 2019. "The Likelihood of Mixed Hitting Times," Papers 1905.03463, arXiv.org, revised Apr 2021.
    16. Annamaria Olivieri & Ermanno Pitacco, 2016. "Frailty and Risk Classification for Life Annuity Portfolios," Risks, MDPI, vol. 4(4), pages 1-23, October.
    17. James W. Vaupel, 2002. "Post-Darwinian longevity," MPIDR Working Papers WP-2002-043, Max Planck Institute for Demographic Research, Rostock, Germany.
    18. Maxim S. Finkelstein, 2005. "Shocks in homogeneous and heterogeneous populations," MPIDR Working Papers WP-2005-024, Max Planck Institute for Demographic Research, Rostock, Germany.
    19. Philip Verwimp & Davide Osti & Gudrun Østby, 2020. "Forced Displacement, Migration, and Fertility in Burundi," Population and Development Review, The Population Council, Inc., vol. 46(2), pages 287-319, June.
    20. Luping Zhao & Timothy E. Hanson, 2011. "Spatially Dependent Polya Tree Modeling for Survival Data," Biometrics, The International Biometric Society, vol. 67(2), pages 391-403, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:5:p:569-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.