IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v105y2012icp80-89.html
   My bibliography  Save this article

Risk analysis of critical infrastructures emphasizing electricity supply and interdependencies

Author

Listed:
  • Kjølle, G.H.
  • Utne, I.B.
  • Gjerde, O.

Abstract

Failures in critical infrastructures can cause major damage to society. Wide-area interruptions (blackouts) in the electricity supply system have severe impacts on societal critical functions and other critical infrastructures, but there is no agreed-upon framework on how to analyze and predict the reliability of electricity supply. Thus, there is a need for an approach to cross-sector risk analyses, which facilitates risk analysis of outages in the electricity supply system and enables investigation of cascading failures and consequences in other infrastructures. This paper presents such an approach, which includes contingency analysis (power flow) and reliability analysis of power systems, as well as use of a cascade diagram for investigating interdependencies. A case study was carried out together with the Emergency Preparedness Group in the city of Oslo, Norway and the network company Hafslund Nett. The case study results highlight the need for cross-sector analyses by showing that the total estimated societal costs are substantially higher when cascading effects and consequences to other infrastructures are taken into account compared to only considering the costs of electricity interruptions as seen by the network company. The approach is a promising starting point for cross-sector risk analysis of electricity supply interruptions and consequences for dependent infrastructures.

Suggested Citation

  • Kjølle, G.H. & Utne, I.B. & Gjerde, O., 2012. "Risk analysis of critical infrastructures emphasizing electricity supply and interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 80-89.
  • Handle: RePEc:eee:reensy:v:105:y:2012:i:c:p:80-89
    DOI: 10.1016/j.ress.2012.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201200021X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.02.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Rigole & K. Vanthournout & K. De Brabandere & G. Deconinck, 2008. "Agents controlling the electric power infrastructure," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 4(1/2), pages 96-109.
    2. Hafiz Abdur Rahman & Konstantin Beznosov & Jose R. Marti, 2009. "Identification of sources of failures and their propagation in critical infrastructures from 12 years of public failure reports," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 5(3), pages 220-244.
    3. Volkanovski, Andrija & ÄŒepin, Marko & Mavko, Borut, 2009. "Application of the fault tree analysis for assessment of power system reliability," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1116-1127.
    4. Utne, I.B. & Hokstad, P. & Vatn, J., 2011. "A method for risk modeling of interdependencies in critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 671-678.
    5. Abou El Kalam, A. & Deswarte, Y. & Baïna, A. & Kaâniche, M., 2009. "PolyOrBAC: A security framework for Critical Infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(4), pages 154-169.
    6. Wolfgang Kroger, 2006. "Critical infrastructures at risk: securing electric power supply," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 2(2/3), pages 273-293.
    7. James D. Myers & Michael A. Sorrentino Jr., 2011. "Regional critical infrastructure assessment: Kansas City," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 7(1), pages 58-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samiul Hasan & Greg Foliente, 2015. "Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: emerging R&D challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2143-2168, September.
    2. Mendonça, David & Wallace, William A., 2015. "Factors underlying organizational resilience: The case of electric power restoration in New York City after 11 September 2001," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 83-91.
    3. Stergiopoulos, George & Kotzanikolaou, Panayiotis & Theocharidou, Marianthi & Lykou, Georgia & Gritzalis, Dimitris, 2016. "Time-based critical infrastructure dependency analysis for large-scale and cross-sectoral failures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 12(C), pages 46-60.
    4. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    5. Vennemo, Haakon & Rosnes, Orvika & Skulstad, Andreas, 2022. "The cost to households of a large electricity outage," Energy Economics, Elsevier, vol. 116(C).
    6. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    7. Rahmatallah Poudineh & Tooraj Jamasb, 2017. "Electricity Supply Interruptions: Sectoral Interdependencies and the Cost of Energy Not Served for the Scottish Economy," The Energy Journal, , vol. 38(1), pages 51-76, January.
    8. Kosai, Shoki & Unesaki, Hironobu, 2017. "Quantitative analysis on the impact of nuclear energy supply disruption on electricity supply security," Applied Energy, Elsevier, vol. 208(C), pages 1198-1207.
    9. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    10. Gao, Guibing & Wang, Junshen & Yue, Wenhui & Ou, Wenchu, 2020. "Structural-vulnerability assessment of reconfigurable manufacturing system based on universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    11. Guibing, Gao & Wenhui, Yue & Wenchu, Ou & Hao, Tang, 2018. "Vulnerability evaluation method applied to manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 255-265.
    12. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    13. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching & Tzeng, Gwo-Hshiung, 2020. "A new soft computing approach for analyzing the influential relationships of critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    14. Márcio das Chagas Moura & Helder Henrique Lima Diniz & Enrique López Droguett & Beatriz Sales da Cunha & Isis Didier Lins & Vicente Ribeiro Simoni, 2017. "Embedding resilience in the design of the electricity supply for industrial clients," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-33, November.
    15. Shoki Kosai & Chia Kwang Tan & Eiji Yamasue, 2018. "Evaluating Power Reliability Dedicated for Sudden Disruptions: Its Application to Determine Capacity on the Basis of Energy Security," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    16. Suo, Weilan & Wang, Lin & Li, Jianping, 2021. "Probabilistic risk assessment for interdependent critical infrastructures: A scenario-driven dynamic stochastic model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    17. Å arÅ«nienÄ—, Inga & MartiÅ¡auskas, Linas & KrikÅ¡tolaitis, RiÄ ardas & Augutis, Juozas & Setola, Roberto, 2024. "Risk assessment of critical infrastructures: A methodology based on criticality of infrastructure elements," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Jose R. Vargas-Jaramillo & Jhon A. Montanez-Barrera & Michael R. von Spakovsky & Lamine Mili & Sergio Cano-Andrade, 2019. "Effects of Producer and Transmission Reliability on the Sustainability Assessment of Power System Networks," Energies, MDPI, vol. 12(3), pages 1-21, February.
    19. Veldhuis, Anton Johannes & Leach, Matthew & Yang, Aidong, 2018. "The impact of increased decentralised generation on the reliability of an existing electricity network," Applied Energy, Elsevier, vol. 215(C), pages 479-502.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    2. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    3. Katina, Polinpapilinho F. & Ariel Pinto, C. & Bradley, Joseph M. & Hester, Patrick T., 2014. "Interdependency-induced risk with applications to healthcare," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(1), pages 12-26.
    4. Abou el Kalam, Anas, 2021. "Securing SCADA and critical industrial systems: From needs to security mechanisms," International Journal of Critical Infrastructure Protection, Elsevier, vol. 32(C).
    5. Moglen, Rachel L. & Barth, Julius & Gupta, Shagun & Kawai, Eiji & Klise, Katherine & Leibowicz, Benjamin D., 2023. "A nexus approach to infrastructure resilience planning under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Vaurio, Jussi K., 2011. "Importance measures in risk-informed decision making: Ranking, optimisation and configuration control," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1426-1436.
    7. Leonardo Leoni & Farshad BahooToroody & Saeed Khalaj & Filippo De Carlo & Ahmad BahooToroody & Mohammad Mahdi Abaei, 2021. "Bayesian Estimation for Reliability Engineering: Addressing the Influence of Prior Choice," IJERPH, MDPI, vol. 18(7), pages 1-16, March.
    8. Tao, Haohan & Jia, Peng & Wang, Xiangyu & Wang, Liquan, 2024. "Reliability analysis of subsea control module based on dynamic Bayesian network and digital twin," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    9. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching & Tzeng, Gwo-Hshiung, 2020. "A new soft computing approach for analyzing the influential relationships of critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    10. Han, Lin & Zhao, Xudong & Chen, Zhilong & Gong, Huadong & Hou, Benwei, 2021. "Assessing resilience of urban lifeline networks to intentional attacks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    12. Edward J. Oughton & Daniel Ralph & Raghav Pant & Eireann Leverett & Jennifer Copic & Scott Thacker & Rabia Dada & Simon Ruffle & Michelle Tuveson & Jim W Hall, 2019. "Stochastic Counterfactual Risk Analysis for the Vulnerability Assessment of Cyber‐Physical Attacks on Electricity Distribution Infrastructure Networks," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2012-2031, September.
    13. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    14. Wang, Shuliang & Zhang, Jianhua & Yue, Xin, 2018. "Multiple robustness assessment method for understanding structural and functional characteristics of the power network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 261-270.
    15. Huang, Chao & Li, Liang, 2020. "Architectural design and analysis of a steer-by-wire system in view of functional safety concept," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    16. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    17. Arvidsson, Björn & Johansson, Jonas & Guldåker, Nicklas, 2021. "Critical infrastructure, geographical information science and risk governance: A systematic cross-field review," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Darwish, Molham & Almouahed, Shaban & de Lamotte, Florent, 2017. "The integration of expert-defined importance factors to enrich Bayesian Fault Tree Analysis," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 81-90.
    19. Li, Daqing & Zhang, Qiong & Zio, Enrico & Havlin, Shlomo & Kang, Rui, 2015. "Network reliability analysis based on percolation theory," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 556-562.
    20. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:105:y:2012:i:c:p:80-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.