IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v125y2014icp82-91.html
   My bibliography  Save this article

A modeling framework for the resilience analysis of networked systems-of-systems based on functional dependencies

Author

Listed:
  • Filippini, Roberto
  • Silva, Andrés

Abstract

Critical infrastructures provide services that are essential for the support of everyday activities in modern societies. Being the result of a continuous process of integration of diverse technologies and organizations, they require a multi-disciplinary, systemic approach in order to be understood. In this respect, one of the most challenging issues is the analysis of infrastructures under disturbance or malfunctioning, and their ability to resist, react and recover, in a word the resilience. This paper presents a methodology of resilience analysis of systems of systems, with infrastructures as a special instance. A conceptual representation of the infrastructure, based on the functional relationships among its components, is given and then analyzed with respect to its structural and dynamic properties. Most critical and vulnerable components are identified. The response of the system to failure propagation is simulated in order to check if it is able to cope with them and recover in a resilient fashion. The analysis outcomes are used for a resilience-informed review of the infrastructure.

Suggested Citation

  • Filippini, Roberto & Silva, Andrés, 2014. "A modeling framework for the resilience analysis of networked systems-of-systems based on functional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 82-91.
  • Handle: RePEc:eee:reensy:v:125:y:2014:i:c:p:82-91
    DOI: 10.1016/j.ress.2013.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013002676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eusgeld, Irene & Nan, Cen & Dietz, Sven, 2011. "“System-of-systems†approach for interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 679-686.
    2. Utne, I.B. & Hokstad, P. & Vatn, J., 2011. "A method for risk modeling of interdependencies in critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 671-678.
    3. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
    4. Nan, Cen & Eusgeld, Irene, 2011. "Adopting HLA standard for interdependency study," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 149-159.
    5. Bompard, Ettore & Napoli, Roberto & Xue, Fei, 2009. "Analysis of structural vulnerabilities in power transmission grids," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(1), pages 5-12.
    6. Yusta, Jose M. & Correa, Gabriel J. & Lacal-Arántegui, Roberto, 2011. "Methodologies and applications for critical infrastructure protection: State-of-the-art," Energy Policy, Elsevier, vol. 39(10), pages 6100-6119, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    2. Abedi, Amin & Gaudard, Ludovic & Romerio, Franco, 2019. "Review of major approaches to analyze vulnerability in power system," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 153-172.
    3. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    4. Arvidsson, Björn & Johansson, Jonas & Guldåker, Nicklas, 2021. "Critical infrastructure, geographical information science and risk governance: A systematic cross-field review," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Wang, Shuliang & Hong, Liu & Chen, Xueguang, 2012. "Vulnerability analysis of interdependent infrastructure systems: A methodological framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3323-3335.
    6. Garcez, Thalles Vitelli & de Almeida, Adiel Teixeira, 2014. "A risk measurement tool for an underground electricity distribution system considering the consequences and uncertainties of manhole events," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 68-80.
    7. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    9. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching & Tzeng, Gwo-Hshiung, 2020. "A new soft computing approach for analyzing the influential relationships of critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    10. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    11. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    12. Hassan Al-Zarooni & Hamdi Bashir, 2020. "An integrated ISM fuzzy MICMAC approach for modeling and analyzing electrical power system network interdependencies," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1204-1226, December.
    13. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    14. Chao Fang & Piao Dong & Yi-Ping Fang & Enrico Zio, 2020. "Vulnerability analysis of critical infrastructure under disruptions: An application to China Railway High-speed," Journal of Risk and Reliability, , vol. 234(2), pages 235-245, April.
    15. Zio, E. & Ferrario, E., 2013. "A framework for the system-of-systems analysis of the risk for a safety-critical plant exposed to external events," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 114-125.
    16. Zhao, Taiyi & Tang, Yuchun & Li, Qiming & Wang, Jingquan, 2024. "Enhancing urban system resilience to earthquake disasters: Impact of interdependence and resource allocation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 45(C).
    17. Sun, Qin-Ying & Li, Xiang-Yang & Yu, Feng, 2016. "Designing an emergency continuity plan for a megacity government: A conceptual framework for coping with natural catastrophes," International Journal of Critical Infrastructure Protection, Elsevier, vol. 13(C), pages 28-35.
    18. Antonello, Federico & Baraldi, Piero & Shokry, Ahmed & Zio, Enrico & Gentile, Ugo & Serio, Luigi, 2021. "Association rules extraction for the identification of functional dependencies in complex technical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    19. Nan, Cen & Eusgeld, Irene & Kröger, Wolfgang, 2013. "Analyzing vulnerabilities between SCADA system and SUC due to interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 76-93.
    20. Senderov, S.M. & Vorobev, S.V., 2020. "Approaches to the identification of critical facilities and critical combinations of facilities in the gas industry in terms of its operability," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:125:y:2014:i:c:p:82-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.