IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v510y2018icp261-270.html
   My bibliography  Save this article

Multiple robustness assessment method for understanding structural and functional characteristics of the power network

Author

Listed:
  • Wang, Shuliang
  • Zhang, Jianhua
  • Yue, Xin

Abstract

This paper develops a methodological framework to study robustness of the power network from both structural and functional perspective, and uses the central China power grid as an example to illustrate the usage and effectiveness of the proposed framework. Specifically, we use percolation to determine the phase transition process, and use controllability theory to calculate the number of minimum driver nodes in structural robustness analysis. We obtain the vulnerability curves and identify the critical dense areas that are most likely to be targets of attack in functional robustness analysis. Results show that the power network here exhibits similar characteristics as scale free network and is relatively vulnerable to deliberate attacks. Some of the dense areas in the power network are highly sensitive to terrorist attacks. The proposed framework can be applied to other infrastructure networks to give a deep understanding of the system robustness.

Suggested Citation

  • Wang, Shuliang & Zhang, Jianhua & Yue, Xin, 2018. "Multiple robustness assessment method for understanding structural and functional characteristics of the power network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 261-270.
  • Handle: RePEc:eee:phsmap:v:510:y:2018:i:c:p:261-270
    DOI: 10.1016/j.physa.2018.06.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118308458
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Santella & Laura J. Steinberg & Kyle Parks, 2009. "Decision Making for Extreme Events: Modeling Critical Infrastructure Interdependencies to Aid Mitigation and Response Planning," Review of Policy Research, Policy Studies Organization, vol. 26(4), pages 409-422, July.
    2. Hong, Liu & Ouyang, Min & Peeta, Srinivas & He, Xiaozheng & Yan, Yongze, 2015. "Vulnerability assessment and mitigation for the Chinese railway system under floods," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 58-68.
    3. Utne, I.B. & Hokstad, P. & Vatn, J., 2011. "A method for risk modeling of interdependencies in critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 671-678.
    4. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    5. Wang, Shuliang & Zhang, Jianhua & Zhao, Mingwei & Min, Xu, 2017. "Vulnerability analysis and critical areas identification of the power systems under terrorist attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 156-165.
    6. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    7. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    8. Bompard, E. & Napoli, R. & Xue, F., 2009. "Assessment of information impacts in power system security against malicious attacks in a general framework," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1087-1094.
    9. Hong, Liu & Yan, Yongze & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2017. "Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 58-72.
    10. Guo, Wenzhang & Wang, Hao & Wu, Zhengping, 2018. "Robustness analysis of complex networks with power decentralization strategy via flow-sensitive centrality against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 186-199.
    11. Zhang, Jianhua & Wu, Zhihai & Hong, Liu & Xu, Xiaoming, 2011. "Connectivity recovery of multi-agent systems based on connecting neighbor set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4596-4601.
    12. Shuai Zhang & Man-Gui Liang & Zhong-Yuan Jiang & Hui-Jia Li, 2015. "Improved efficient static weighted routing strategy on two-layer complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(01), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nie, Yan & Zhang, Guoxing & Duan, Hongbo, 2020. "An interconnected panorama of future cross-regional power grid: A complex network approach," Resources Policy, Elsevier, vol. 67(C).
    2. Guo, Jingni & Xu, Junxiang & He, Zhenggang & Liao, Wei, 2021. "Research on risk propagation method of multimodal transport network under uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    3. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Liu & Yan, Yongze & Ouyang, Min & Tian, Hui & He, Xiaozheng, 2017. "Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 58-72.
    2. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.
    3. Wang, Shuliang & Stanley, H. Eugene & Gao, Yachun, 2018. "A methodological framework for vulnerability analysis of interdependent infrastructure systems under deliberate attacks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 21-29.
    4. Samiul Hasan & Greg Foliente, 2015. "Modeling infrastructure system interdependencies and socioeconomic impacts of failure in extreme events: emerging R&D challenges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2143-2168, September.
    5. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    6. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    7. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    9. Jing Liu & Huapu Lu & He Ma & Wenzhi Liu, 2017. "Network Vulnerability Analysis of Rail Transit Plans in Beijng-Tianjin-Hebei Region Considering Connectivity Reliability," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    10. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    11. Guibing, Gao & Wenhui, Yue & Wenchu, Ou & Hao, Tang, 2018. "Vulnerability evaluation method applied to manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 255-265.
    12. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Stergiopoulos, George & Kotzanikolaou, Panayiotis & Theocharidou, Marianthi & Lykou, Georgia & Gritzalis, Dimitris, 2016. "Time-based critical infrastructure dependency analysis for large-scale and cross-sectoral failures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 12(C), pages 46-60.
    14. Zhao, Taiyi & Tang, Yuchun & Li, Qiming & Wang, Jingquan, 2024. "Enhancing urban system resilience to earthquake disasters: Impact of interdependence and resource allocation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 45(C).
    15. Ouyang, Min, 2016. "Critical location identification and vulnerability analysis of interdependent infrastructure systems under spatially localized attacks," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 106-116.
    16. Zhao, Chen & Li, Nan & Fang, Dongping, 2018. "Criticality assessment of urban interdependent lifeline systems using a biased PageRank algorithm and a multilayer weighted directed network model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 100-112.
    17. Hong, Liu & Ouyang, Min & Peeta, Srinivas & He, Xiaozheng & Yan, Yongze, 2015. "Vulnerability assessment and mitigation for the Chinese railway system under floods," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 58-68.
    18. Wang, Shuliang & Zhang, Jianhua & Zhao, Mingwei & Min, Xu, 2017. "Vulnerability analysis and critical areas identification of the power systems under terrorist attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 156-165.
    19. Thacker, Scott & Pant, Raghav & Hall, Jim W., 2017. "System-of-systems formulation and disruption analysis for multi-scale critical national infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 30-41.
    20. Gao, Guibing & Wang, Junshen & Yue, Wenhui & Ou, Wenchu, 2020. "Structural-vulnerability assessment of reconfigurable manufacturing system based on universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:510:y:2018:i:c:p:261-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.