IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p2059-d153015.html
   My bibliography  Save this article

Evaluating Power Reliability Dedicated for Sudden Disruptions: Its Application to Determine Capacity on the Basis of Energy Security

Author

Listed:
  • Shoki Kosai

    (Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan)

  • Chia Kwang Tan

    (UM Power Energy Dedicated Advanced Centre, University of Malaya, Kuala Lumpur 59990, Malaysia)

  • Eiji Yamasue

    (Department of Mechanical Engineering, College of Science and Engineering, Ritsumeikan University, Shiga 525-8577, Japan)

Abstract

Given that a continuous power supply is fundamental to the economy and human well-being, development of a self-sustained electrical system that can withstand sudden disturbances by employing both renewable energy and storage technology is of significant importance. Most of the existing reliability approaches hardly represent a particular method of analyzing system adapting ability to remain self-sufficient in the short-term after the occurrence of sudden disruptions. In addition, existing reliability indexes are developed based on past experience, hardly covering the prediction of disruption risks. As such, a new electricity reliability quantification approach dedicated for sudden disruptions was established and the newly proposed electricity reliability prediction index was evaluated. The developed index was applied to determine optimal capacity sizing in the context of energy security. The availability of such electricity reliability predictions will allow the facility engineer to make wiser decisions to maintain a continuous power supply even after the occurrence of sudden disturbances. The developed algorithm can be readily implemented in any electrical system network including microgrid and rural electrification.

Suggested Citation

  • Shoki Kosai & Chia Kwang Tan & Eiji Yamasue, 2018. "Evaluating Power Reliability Dedicated for Sudden Disruptions: Its Application to Determine Capacity on the Basis of Energy Security," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2059-:d:153015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/2059/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/2059/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cohen, Gail & Joutz, Frederick & Loungani, Prakash, 2011. "Measuring energy security: Trends in the diversification of oil and natural gas supplies," Energy Policy, Elsevier, vol. 39(9), pages 4860-4869, September.
    2. Kjølle, G.H. & Utne, I.B. & Gjerde, O., 2012. "Risk analysis of critical infrastructures emphasizing electricity supply and interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 80-89.
    3. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    4. Winzer, Christian, 2012. "Conceptualizing energy security," Energy Policy, Elsevier, vol. 46(C), pages 36-48.
    5. Jakhrani, Abdul Qayoom & Othman, Al-Khalid & Rigit, Andrew Ragai Henry & Samo, Saleem Raza & Kamboh, Shakeel Ahmed, 2012. "A novel analytical model for optimal sizing of standalone photovoltaic systems," Energy, Elsevier, vol. 46(1), pages 675-682.
    6. Oh, Tick Hui & Pang, Shen Yee & Chua, Shing Chyi, 2010. "Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1241-1252, May.
    7. Zhang, Sheng & Huang, Pei & Sun, Yongjun, 2016. "A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties," Energy, Elsevier, vol. 94(C), pages 654-665.
    8. Gerd Kjølle & Oddbjørn Gjerde, 2012. "Risk Analysis of Electricity Supply," Springer Series in Reliability Engineering, in: Per Hokstad & Ingrid B. Utne & Jørn Vatn (ed.), Risk and Interdependencies in Critical Infrastructures, edition 127, chapter 0, pages 95-108, Springer.
    9. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    10. Portugal-Pereira, Joana & Esteban, Miguel, 2014. "Implications of paradigm shift in Japan’s electricity security of supply: A multi-dimensional indicator assessment," Applied Energy, Elsevier, vol. 123(C), pages 424-434.
    11. Cabalu, Helen, 2010. "Indicators of security of natural gas supply in Asia," Energy Policy, Elsevier, vol. 38(1), pages 218-225, January.
    12. Wu, Gang & Liu, Lan-Cui & Han, Zhi-Yong & Wei, Yi-Ming, 2012. "Climate protection and China’s energy security: Win–win or tradeoff," Applied Energy, Elsevier, vol. 97(C), pages 157-163.
    13. Martchamadol, Jutamanee & Kumar, S., 2012. "Thailand's energy security indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6103-6122.
    14. Celik, A.N., 2007. "Effect of different load profiles on the loss-of-load probability of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 32(12), pages 2096-2115.
    15. Henneaux, Pierre & Labeau, Pierre-Etienne & Maun, Jean-Claude, 2012. "A level-1 probabilistic risk assessment to blackout hazard in transmission power systems," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 41-52.
    16. Kosai, Shoki & Yamasue, Eiji, 2018. "Cost-security analysis dedicated for the off-grid electricity system," Renewable Energy, Elsevier, vol. 115(C), pages 871-879.
    17. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    18. Iqbal, M.T., 2004. "A feasibility study of a zero energy home in Newfoundland," Renewable Energy, Elsevier, vol. 29(2), pages 277-289.
    19. Clift, Roland, 2007. "Climate change and energy policy: The importance of sustainability arguments," Energy, Elsevier, vol. 32(4), pages 262-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosai, Shoki & Unesaki, Hironobu, 2020. "Short-term vs long-term reliance: Development of a novel approach for diversity of fuels for electricity in energy security," Applied Energy, Elsevier, vol. 262(C).
    2. Kosai, Shoki & Cravioto, Jordi, 2020. "Resilience of standalone hybrid renewable energy systems: The role of storage capacity," Energy, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kosai, Shoki & Unesaki, Hironobu, 2017. "Quantitative analysis on the impact of nuclear energy supply disruption on electricity supply security," Applied Energy, Elsevier, vol. 208(C), pages 1198-1207.
    2. Erahman, Qodri Febrilian & Purwanto, Widodo Wahyu & Sudibandriyo, Mahmud & Hidayatno, Akhmad, 2016. "An assessment of Indonesia's energy security index and comparison with seventy countries," Energy, Elsevier, vol. 111(C), pages 364-376.
    3. Ang, B.W. & Choong, W.L. & Ng, T.S., 2015. "Energy security: Definitions, dimensions and indexes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1077-1093.
    4. Kosai, Shoki & Yamasue, Eiji, 2018. "Cost-security analysis dedicated for the off-grid electricity system," Renewable Energy, Elsevier, vol. 115(C), pages 871-879.
    5. Tete, Komlan H.S. & Soro, Y.M. & Sidibé, S.S. & Jones, Rory V., 2023. "Assessing energy security within the electricity sector in the West African economic and monetary union: Inter-country performances and trends analysis with policy implications," Energy Policy, Elsevier, vol. 173(C).
    6. Mu Li & Li Li & Wadim Strielkowski, 2019. "The Impact of Urbanization and Industrialization on Energy Security: A Case Study of China," Energies, MDPI, vol. 12(11), pages 1-22, June.
    7. Gasser, Patrick, 2020. "A review on energy security indices to compare country performances," Energy Policy, Elsevier, vol. 139(C).
    8. Zhang, Long & Bai, Wuliyasu & Xiao, Huijuan & Ren, Jingzheng, 2021. "Measuring and improving regional energy security: A methodological framework based on both quantitative and qualitative analysis," Energy, Elsevier, vol. 227(C).
    9. Zhang, Long & Yu, Jing & Sovacool, Benjamin K. & Ren, Jingzheng, 2017. "Measuring energy security performance within China: Toward an inter-provincial prospective," Energy, Elsevier, vol. 125(C), pages 825-836.
    10. Narula, Kapil & Reddy, B. Sudhakara, 2016. "A SES (sustainable energy security) index for developing countries," Energy, Elsevier, vol. 94(C), pages 326-343.
    11. Song, Yan & Zhang, Ming & Sun, Ruifeng, 2019. "Using a new aggregated indicator to evaluate China's energy security," Energy Policy, Elsevier, vol. 132(C), pages 167-174.
    12. Honorata Nyga-Łukaszewska & Kentaka Aruga & Katarzyna Stala-Szlugaj, 2020. "Energy Security of Poland and Coal Supply: Price Analysis," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    13. Wang, Qiang & Zhou, Kan, 2017. "A framework for evaluating global national energy security," Applied Energy, Elsevier, vol. 188(C), pages 19-31.
    14. Li, Jinchao & Wang, Lina & Lin, Xiaoshan & Qu, Shen, 2020. "Analysis of China’s energy security evaluation system: Based on the energy security data from 30 provinces from 2010 to 2016," Energy, Elsevier, vol. 198(C).
    15. Abdullah, Fahad Bin & Iqbal, Rizwan & Hyder, Syed Irfan & Jawaid, Mohammad, 2020. "Energy security indicators for Pakistan: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    17. Ioannidis, Alexis & Chalvatzis, Konstantinos J. & Li, Xin & Notton, Gilles & Stephanides, Phedeas, 2019. "The case for islands’ energy vulnerability: Electricity supply diversity in 44 global islands," Renewable Energy, Elsevier, vol. 143(C), pages 440-452.
    18. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    19. Gouveia, João Pedro & Dias, Luís & Martins, Inês & Seixas, Júlia, 2014. "Effects of renewables penetration on the security of Portuguese electricity supply," Applied Energy, Elsevier, vol. 123(C), pages 438-447.
    20. Kang, Duan, 2024. "The establishment of evaluation systems and an index for energy superpower," Applied Energy, Elsevier, vol. 356(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:2059-:d:153015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.