IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0188875.html
   My bibliography  Save this article

Embedding resilience in the design of the electricity supply for industrial clients

Author

Listed:
  • Márcio das Chagas Moura
  • Helder Henrique Lima Diniz
  • Enrique López Droguett
  • Beatriz Sales da Cunha
  • Isis Didier Lins
  • Vicente Ribeiro Simoni

Abstract

This paper proposes an optimization model, using Mixed-Integer Linear Programming (MILP), to support decisions related to making investments in the design of power grids serving industrial clients that experience interruptions to their energy supply due to disruptive events. In this approach, by considering the probabilities of the occurrence of a set of such disruptive events, the model is used to minimize the overall expected cost by determining an optimal strategy involving pre- and post-event actions. The pre-event actions, which are considered during the design phase, evaluate the resilience capacity (absorption, adaptation and restoration) and are tailored to the context of industrial clients dependent on a power grid. Four cases are analysed to explore the results of different probabilities of the occurrence of disruptions. Moreover, two scenarios, in which the probability of occurrence is lowest but the consequences are most serious, are selected to illustrate the model’s applicability. The results indicate that investments in pre-event actions, if implemented, can enhance the resilience of power grids serving industrial clients because the impacts of disruptions either are experienced only for a short time period or are completely avoided.

Suggested Citation

  • Márcio das Chagas Moura & Helder Henrique Lima Diniz & Enrique López Droguett & Beatriz Sales da Cunha & Isis Didier Lins & Vicente Ribeiro Simoni, 2017. "Embedding resilience in the design of the electricity supply for industrial clients," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-33, November.
  • Handle: RePEc:plo:pone00:0188875
    DOI: 10.1371/journal.pone.0188875
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188875
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188875&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0188875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    2. Zhang, X. & Miller-Hooks, E. & Denny, K., 2015. "Assessing the role of network topology in transportation network resilience," Journal of Transport Geography, Elsevier, vol. 46(C), pages 35-45.
    3. Kjølle, G.H. & Utne, I.B. & Gjerde, O., 2012. "Risk analysis of critical infrastructures emphasizing electricity supply and interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 80-89.
    4. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    5. Rokstad, Marius Møller & Ugarelli, Rita Maria, 2015. "Minimising the total cost of renewal and risk of water infrastructure assets by grouping renewal interventions," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 148-160.
    6. Alexis Kwasinski, 2016. "Quantitative Model and Metrics of Electrical Grids’ Resilience Evaluated at a Power Distribution Level," Energies, MDPI, vol. 9(2), pages 1-27, February.
    7. Kim, Dong Hwan & Eisenberg, Daniel A. & Chun, Yeong Han & Park, Jeryang, 2017. "Network topology and resilience analysis of South Korean power grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 13-24.
    8. Sonia Irshad Mari & Young Hae Lee & Muhammad Saad Memon, 2014. "Sustainable and Resilient Supply Chain Network Design under Disruption Risks," Sustainability, MDPI, vol. 6(10), pages 1-21, September.
    9. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    10. Sawik, Tadeusz, 2013. "Selection of resilient supply portfolio under disruption risks," Omega, Elsevier, vol. 41(2), pages 259-269.
    11. Utne, I.B. & Hokstad, P. & Vatn, J., 2011. "A method for risk modeling of interdependencies in critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 671-678.
    12. Wei, Du Qu & Luo, Xiao Shu & Zhang, Bo, 2012. "Analysis of cascading failure in complex power networks under the load local preferential redistribution rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2771-2777.
    13. Lichun Chen & Elise Miller-Hooks, 2012. "Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport," Transportation Science, INFORMS, vol. 46(1), pages 109-123, February.
    14. Zhao, S. & Liu, X. & Zhuo, Y., 2017. "Hybrid Hidden Markov Models for resilience metrics in a dynamic infrastructure system," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 84-97.
    15. Igor Linkov & Todd Bridges & Felix Creutzig & Jennifer Decker & Cate Fox-Lent & Wolfgang Kröger & James H. Lambert & Anders Levermann & Benoit Montreuil & Jatin Nathwani & Raymond Nyer & Ortwin Renn &, 2014. "Changing the resilience paradigm," Nature Climate Change, Nature, vol. 4(6), pages 407-409, June.
    16. Faturechi, Reza & Miller-Hooks, Elise, 2014. "Travel time resilience of roadway networks under disaster," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 47-64.
    17. Fang, Yiping & Sansavini, Giovanni, 2017. "Optimizing power system investments and resilience against attacks," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 161-173.
    18. Filippini, Roberto & Silva, Andrés, 2014. "A modeling framework for the resilience analysis of networked systems-of-systems based on functional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 82-91.
    19. Labaka, Leire & Hernantes, Josune & Sarriegi, Jose M., 2015. "Resilience framework for critical infrastructures: An empirical study in a nuclear plant," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 92-105.
    20. Mendonça, David & Wallace, William A., 2015. "Factors underlying organizational resilience: The case of electric power restoration in New York City after 11 September 2001," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 83-91.
    21. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    22. Roege, Paul E. & Collier, Zachary A. & Mancillas, James & McDonagh, John A. & Linkov, Igor, 2014. "Metrics for energy resilience," Energy Policy, Elsevier, vol. 72(C), pages 249-256.
    23. Cardoso, Sónia R. & Paula Barbosa-Póvoa, Ana & Relvas, Susana & Novais, Augusto Q., 2015. "Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty," Omega, Elsevier, vol. 56(C), pages 53-73.
    24. Gedik, Ridvan & Medal, Hugh & Rainwater, Chase & Pohl, Ed A. & Mason, Scott J., 2014. "Vulnerability assessment and re-routing of freight trains under disruptions: A coal supply chain network application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 45-57.
    25. Gerd Kjølle & Oddbjørn Gjerde, 2012. "Risk Analysis of Electricity Supply," Springer Series in Reliability Engineering, in: Per Hokstad & Ingrid B. Utne & Jørn Vatn (ed.), Risk and Interdependencies in Critical Infrastructures, edition 127, chapter 0, pages 95-108, Springer.
    26. Mark Turnquist & Eric Vugrin, 2013. "Design for resilience in infrastructure distribution networks," Environment Systems and Decisions, Springer, vol. 33(1), pages 104-120, March.
    27. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    28. Nan, Cen & Sansavini, Giovanni, 2017. "A quantitative method for assessing resilience of interdependent infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 35-53.
    29. Barker, Kash & Ramirez-Marquez, Jose Emmanuel & Rocco, Claudio M., 2013. "Resilience-based network component importance measures," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 89-97.
    30. Raúl Baños & Juan Reca & Juan Martínez & Consolación Gil & Antonio Márquez, 2011. "Resilience Indexes for Water Distribution Network Design: A Performance Analysis Under Demand Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2351-2366, August.
    31. Lucas Cuadra & Sancho Salcedo-Sanz & Javier Del Ser & Silvia Jiménez-Fernández & Zong Woo Geem, 2015. "A Critical Review of Robustness in Power Grids Using Complex Networks Concepts," Energies, MDPI, vol. 8(9), pages 1-55, August.
    32. Garg, Amit & Naswa, Prakriti & Shukla, P.R., 2015. "Energy infrastructure in India: Profile and risks under climate change," Energy Policy, Elsevier, vol. 81(C), pages 226-238.
    33. Ghanem, Dana Abi & Mander, Sarah & Gough, Clair, 2016. "“I think we need to get a better generator”: Household resilience to disruption to power supply during storm events," Energy Policy, Elsevier, vol. 92(C), pages 171-180.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laiany Rodrigues Marinho & Márcio das Chagas Moura & Beatriz Sales Cunha & Isis Didier Lins, 2020. "Optimization of Investments in the Resilience of Water Distribution Systems Subject to Interruptions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 929-954, February.
    2. Edoardo Alessio Piana & Fabio Bignucolo & Alberto Donini & Roberto Spezie, 2018. "Maintenance of a High-Voltage Overhead Transmission Line: Sustainability and Noise Impact Assessment," Sustainability, MDPI, vol. 10(2), pages 1-22, February.
    3. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    3. Liu, Xing & Fang, Yi-Ping & Zio, Enrico, 2021. "A Hierarchical Resilience Enhancement Framework for Interdependent Critical Infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Tiong, Achara & Vergara, Hector A., 2023. "Evaluation of network expansion decisions for resilient interdependent critical infrastructures with different topologies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    6. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    7. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    8. Caputo, Antonio C. & Kalemi, Bledar & Paolacci, Fabrizio & Corritore, Daniele, 2020. "Computing resilience of process plants under Na-Tech events: Methodology and application to sesmic loading scenarios," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Zhang, Xiaoge & Mahadevan, Sankaran & Sankararaman, Shankar & Goebel, Kai, 2018. "Resilience-based network design under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 364-379.
    10. Adrian J. Hickford & Simon P. Blainey & Alejandro Ortega Hortelano & Raghav Pant, 2018. "Resilience engineering: theory and practice in interdependent infrastructure systems," Environment Systems and Decisions, Springer, vol. 38(3), pages 278-291, September.
    11. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Liu, Wei & Song, Zhaoyang, 2020. "Review of studies on the resilience of urban critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Cassottana, Beatrice & Shen, Lijuan & Tang, Loon Ching, 2019. "Modeling the recovery process: A key dimension of resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    15. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Laiany Rodrigues Marinho & Márcio das Chagas Moura & Beatriz Sales Cunha & Isis Didier Lins, 2020. "Optimization of Investments in the Resilience of Water Distribution Systems Subject to Interruptions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 929-954, February.
    17. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Luan, Jianlin & Li, Tingting & Hu, Kezhen, 2020. "Cyber-physical resilience modelling and assessment of urban roadway system interrupted by rainfall," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Tiong, Achara & Vergara, Hector A., 2023. "A two-stage stochastic multi-objective resilience optimization model for network expansion of interdependent power–water networks under disruption," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    19. Hu, Jinqiu & Khan, Faisal & Zhang, Laibin, 2021. "Dynamic resilience assessment of the Marine LNG offloading system," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    20. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0188875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.