IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v127y2017icp216-220.html
   My bibliography  Save this article

The recycling effect of BOF slag in the portland cement properties

Author

Listed:
  • Carvalho, S.Z.
  • Vernilli, F.
  • Almeida, B.
  • Demarco, M.
  • Silva, S.N.

Abstract

The basic oxygen furnace (BOF) slag use as raw material for cement production carries economic, environmental and technical benefits to the cement industry, reducing energy costs, material consumption and waste storage areas. This study evaluates the partial replacement of blast furnace slag by BOF slag in the production of slag portland cement. Specimens were shaped with addition equivalent to 0; 1.8; 3.6 and 5.4%, in basic oxygen furnace slag weight, to the slag portland cement. The specimens were characterized by the setting time, axial compressive strength at ages 3, 7, 28 and 91days, hot and cold expansibility. The cement with added basic oxygen furnace slag obtained gain in the initial and final strengths for all replacement levels. For the most replacement content (5.4%), the gain in compressive strength obtained amounts to 35% after 3days and 29% after 28days of hydration. The addition of basic oxygen furnace slag in slag portland cement composition had little influence on setting time.

Suggested Citation

  • Carvalho, S.Z. & Vernilli, F. & Almeida, B. & Demarco, M. & Silva, S.N., 2017. "The recycling effect of BOF slag in the portland cement properties," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 216-220.
  • Handle: RePEc:eee:recore:v:127:y:2017:i:c:p:216-220
    DOI: 10.1016/j.resconrec.2017.08.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917302690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.08.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Tongsheng & Yu, Qijun & Wei, Jiangxiong & Li, Jianxin & Zhang, Pingping, 2011. "Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 48-55.
    2. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
    3. Das, B. & Prakash, S. & Reddy, P.S.R. & Misra, V.N., 2007. "An overview of utilization of slag and sludge from steel industries," Resources, Conservation & Recycling, Elsevier, vol. 50(1), pages 40-57.
    4. Skaf, Marta & Manso, Juan M. & Aragón, Ángel & Fuente-Alonso, José A. & Ortega-López, Vanesa, 2017. "EAF slag in asphalt mixes: A brief review of its possible re-use," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 176-185.
    5. Poulikakos, L.D. & Papadaskalopoulou, C. & Hofko, B. & Gschösser, F. & Cannone Falchetto, A. & Bueno, M. & Arraigada, M. & Sousa, J. & Ruiz, R. & Petit, C. & Loizidou, M. & Partl, M.N., 2017. "Harvesting the unexplored potential of European waste materials for road construction," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 32-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandro Donnini Mancini & Gerson Araújo Medeiros & Michel Xocaira Paes & Benone Otávio Souza Oliveira & Maria Lúcia Pereira Antunes & Ricardo Gabbay Souza & José Lázaro Ferraz & Ana Paula Bortoleto & J, 2021. "Circular Economy and Solid Waste Management: Challenges and Opportunities in Brazil," Circular Economy and Sustainability, Springer, vol. 1(1), pages 261-282, June.
    2. Kubilay Kaptan & Sandra Cunha & José Aguiar, 2024. "A Review: Construction and Demolition Waste as a Novel Source for CO 2 Reduction in Portland Cement Production for Concrete," Sustainability, MDPI, vol. 16(2), pages 1-50, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    3. Li, Wei & Sun, Wen & Li, Guomin & Cui, Pengfei & Wu, Wen & Jin, Baihui, 2017. "Temporal and spatial heterogeneity of carbon intensity in China's construction industry," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 162-173.
    4. Gahan, Chandra Sekhar & Sundkvist, Jan-Eric & Engström, Fredrik & Sandström, Åke, 2011. "Utilisation of steel slags as neutralising agents in biooxidation of a refractory gold concentrate and their influence on the subsequent cyanidation," Resources, Conservation & Recycling, Elsevier, vol. 55(5), pages 541-547.
    5. Kimon Keramidas & Silvana Mima & Adrien Bidaud, 2024. "Opportunities and roadblocks in the decarbonisation of the global steel sector: A demand and production modelling approach," Post-Print hal-04383385, HAL.
    6. Lanzerstorfer, Christof & Kröppl, Michaela, 2014. "Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 132-137.
    7. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    8. Dana-Adriana Iluţiu-Varvara & Claudiu Aciu, 2022. "Metallurgical Wastes as Resources for Sustainability of the Steel Industry," Sustainability, MDPI, vol. 14(9), pages 1-25, May.
    9. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
    10. Tomer Fishman & Niko Heeren & Stefan Pauliuk & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 305-320, April.
    11. Daniela Laura Buruiana & Cristian-Dragos Obreja & Elena Emanuela Herbei & Viorica Ghisman, 2021. "Re-Use of Silico-Manganese Slag," Sustainability, MDPI, vol. 13(21), pages 1-9, October.
    12. Jeong, Yong-Soo & Matsubae-Yokoyama, Kazuyo & Kubo, Hironari & Pak, Jong-Jin & Nagasaka, Tetsuya, 2009. "Substance flow analysis of phosphorus and manganese correlated with South Korean steel industry," Resources, Conservation & Recycling, Elsevier, vol. 53(9), pages 479-489.
    13. Hannu Suopajärvi & Antti Salo & Timo Paananen & Riku Mattila & Timo Fabritius, 2013. "Recycling of Coking Plant Residues in a Finnish Steelworks—Laboratory Study and Replacement Ratio Calculation," Resources, MDPI, vol. 2(2), pages 1-15, May.
    14. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the glass industry: A critical and systematic review of developments, sociotechnical systems and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    15. Hugo Rondon Quintana & Saieth Chaves-Pabón & Diego A. Escobar, 2018. "Evaluation of a Warm Mix Asphalt Manufactured with Blast Furnace Slag," Modern Applied Science, Canadian Center of Science and Education, vol. 12(12), pages 1-28, December.
    16. Zhang, Tongsheng & Yu, Qijun & Wei, Jiangxiong & Li, Jianxin & Zhang, Pingping, 2011. "Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 48-55.
    17. Xian’en Wang & Tingyu Hu & Junnian Song & Haiyan Duan, 2022. "Tracking Key Industrial Sectors for CO 2 Mitigation through the Driving Effects: An Attribution Analysis," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    18. Chiara Passoni & Elisabetta Palumbo & Rui Pinho & Alessandra Marini, 2022. "The LCT Challenge: Defining New Design Objectives to Increase the Sustainability of Building Retrofit Interventions," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    19. Müller-Casseres, Eduardo & Edelenbosch, Oreane Y. & Szklo, Alexandre & Schaeffer, Roberto & van Vuuren, Detlef P., 2021. "Global futures of trade impacting the challenge to decarbonize the international shipping sector," Energy, Elsevier, vol. 237(C).
    20. Zhang, Tongsheng & Gao, Peng & Gao, Pinhai & Wei, Jiangxiong & Yu, Qijun, 2013. "Effectiveness of novel and traditional methods to incorporate industrial wastes in cementitious materials—An overview," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 134-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:127:y:2017:i:c:p:216-220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.