IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v2y2013i2p58-72d25505.html
   My bibliography  Save this article

Recycling of Coking Plant Residues in a Finnish Steelworks—Laboratory Study and Replacement Ratio Calculation

Author

Listed:
  • Hannu Suopajärvi

    (Laboratory of Process Metallurgy, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Antti Salo

    (Laboratory of Process Metallurgy, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Timo Paananen

    (Ruukki Metals Oy, Rautaruukintie 155, FI-92100 Raahe, Finland)

  • Riku Mattila

    (Laboratory of Process Metallurgy, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

  • Timo Fabritius

    (Laboratory of Process Metallurgy, University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland)

Abstract

Material efficiency is one of the most effective methods for achieving more sustainable operations in iron and steelmaking. Sintering and briquetting processes are commonly used in integrated steel plants to recycle carbon- and iron-containing residues back to blast furnace. In the Ruukki steelworks in Finland, a surplus of solid coking plant by-products is produced, none of which are presently utilized within the steelworks. In this paper, a novel concept for recycling solid coking plant by-products to a blast furnace via liquid-solid injection is evaluated. According to the conducted laboratory study, all the solid by-products could be utilized via liquid-solid mixture injection. By pulverizing the coke gravel and coke sand and mixing it with extra heavy bottom oil, the annual coke requirement of a blast furnace could be decreased by almost 9% with constant oil injection and could reduce annual oil requirements by almost 39% with constant coke rate. Evaluation of direct and indirect environmental impacts reveals that there would be more positive than negative impacts when recycling solid coking plant by-products inside steel plant boundaries.

Suggested Citation

  • Hannu Suopajärvi & Antti Salo & Timo Paananen & Riku Mattila & Timo Fabritius, 2013. "Recycling of Coking Plant Residues in a Finnish Steelworks—Laboratory Study and Replacement Ratio Calculation," Resources, MDPI, vol. 2(2), pages 1-15, May.
  • Handle: RePEc:gam:jresou:v:2:y:2013:i:2:p:58-72:d:25505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/2/2/58/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/2/2/58/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Serge Roudier & Luis Delgado Sancho & Rainer Remus & Miguel Aguado-Monsonet, 2013. "Best Available Techniques (BAT) Reference Document for Iron and Steel Production: Industrial Emissions Directive 2010/75/EU: Integrated Pollution Prevention and Control," JRC Research Reports JRC69967, Joint Research Centre.
    2. Das, B. & Prakash, S. & Reddy, P.S.R. & Misra, V.N., 2007. "An overview of utilization of slag and sludge from steel industries," Resources, Conservation & Recycling, Elsevier, vol. 50(1), pages 40-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lobato, Natália Cristina Candian & Villegas, Edwin Auza & Mansur, Marcelo Borges, 2015. "Management of solid wastes from steelmaking and galvanizing processes: A brief review," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 49-57.
    2. Lanzerstorfer, Christof, 2015. "Application of air classification for improved recycling of sinter plant dust," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 66-71.
    3. Barbora Švédová & Helena Raclavská & Marek Kucbel & Jana Růžičková & Konstantin Raclavský & Miroslav Koliba & Dagmar Juchelková, 2020. "Concentration Variability of Water-Soluble Ions during the Acceptable and Exceeded Pollution in an Industrial Region," IJERPH, MDPI, vol. 17(10), pages 1-26, May.
    4. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    5. Carvalho, S.Z. & Vernilli, F. & Almeida, B. & Demarco, M. & Silva, S.N., 2017. "The recycling effect of BOF slag in the portland cement properties," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 216-220.
    6. Daniela Laura Buruiana & Cristian-Dragos Obreja & Elena Emanuela Herbei & Viorica Ghisman, 2021. "Re-Use of Silico-Manganese Slag," Sustainability, MDPI, vol. 13(21), pages 1-9, October.
    7. Qin, Shiyue & Chang, Shiyan, 2017. "Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery," Energy, Elsevier, vol. 141(C), pages 435-450.
    8. Hugo Rondon Quintana & Saieth Chaves-Pabón & Diego A. Escobar, 2018. "Evaluation of a Warm Mix Asphalt Manufactured with Blast Furnace Slag," Modern Applied Science, Canadian Center of Science and Education, vol. 12(12), pages 1-28, December.
    9. Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
    10. Ludwik Kosyrczyk & Slawomir Stelmach & Krzysztof Gaska & Agnieszka Generowicz & Natalia Iwaszczuk & Dariusz Kardaś, 2021. "Optimization of Thermal Parameters of the Coke Oven Battery by Modified Methodology of Temperature Measurement in Heating Flues as the Management Tool in the Cokemaking Industry," Energies, MDPI, vol. 14(4), pages 1-13, February.
    11. Sébastien Pissot & Henrik Thunman & Peter Samuelsson & Martin Seemann, 2021. "Production of Negative-Emissions Steel Using a Reducing Gas Derived from DFB Gasification," Energies, MDPI, vol. 14(16), pages 1-32, August.
    12. Raja, R. & Kumar, S., 2023. "Cupola slag as a green concrete-making material and its performance characteristics - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    13. Andrade, Carlos & Desport, Lucas & Selosse, Sandrine, 2024. "Net-negative emission opportunities for the iron and steel industry on a global scale," Applied Energy, Elsevier, vol. 358(C).
    14. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
    15. Philipp Wolf-Zoellner & Ana Roza Medved & Markus Lehner & Nina Kieberger & Katharina Rechberger, 2021. "In Situ Catalytic Methanation of Real Steelworks Gases," Energies, MDPI, vol. 14(23), pages 1-22, December.
    16. Mahjouri, Maryam & Ishak, Mohd Bakri & Torabian, Ali & Manaf, Latifah Abd & Halimoon, Normala, 2017. "Determining the best practicable control technology and its associated emission levels for Iron and Steel industry in Iran," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 114-123.
    17. Gahan, Chandra Sekhar & Sundkvist, Jan-Eric & Engström, Fredrik & Sandström, Åke, 2011. "Utilisation of steel slags as neutralising agents in biooxidation of a refractory gold concentrate and their influence on the subsequent cyanidation," Resources, Conservation & Recycling, Elsevier, vol. 55(5), pages 541-547.
    18. Lanzerstorfer, Christof & Kröppl, Michaela, 2014. "Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 132-137.
    19. Dana-Adriana Iluţiu-Varvara & Claudiu Aciu, 2022. "Metallurgical Wastes as Resources for Sustainability of the Steel Industry," Sustainability, MDPI, vol. 14(9), pages 1-25, May.
    20. Ziyad Sherif & Shoaib Sarfraz & Mark Jolly & Konstantinos Salonitis, 2023. "Greening Foundation Industries: Shared Processes and Sustainable Pathways," Sustainability, MDPI, vol. 15(19), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:2:y:2013:i:2:p:58-72:d:25505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.