IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11771-d664016.html
   My bibliography  Save this article

Re-Use of Silico-Manganese Slag

Author

Listed:
  • Daniela Laura Buruiana

    (Interdisciplinary Research Centre in the Field of Eco-Nano Technology and Advance Materials CC-ITI, Faculty of Engineering, “Dunarea de Jos” University of Galati, 47 Domneasca, 800008 Galati, Romania)

  • Cristian-Dragos Obreja

    (Department of Materials and Environmental Engineering, Faculty of Engineering, “Dunarea de Jos” University of Galati, 47 Domneasca, 800008 Galati, Romania)

  • Elena Emanuela Herbei

    (Interdisciplinary Research Centre in the Field of Eco-Nano Technology and Advance Materials CC-ITI, Faculty of Engineering, “Dunarea de Jos” University of Galati, 47 Domneasca, 800008 Galati, Romania)

  • Viorica Ghisman

    (Interdisciplinary Research Centre in the Field of Eco-Nano Technology and Advance Materials CC-ITI, Faculty of Engineering, “Dunarea de Jos” University of Galati, 47 Domneasca, 800008 Galati, Romania)

Abstract

The world’s rapidly growing demand for raw manganese has made it increasingly important to develop methods for the economic recovery of manganese from secondary sources. The current study aims to present possible ways for the recycling and reuse of silico-manganese slag landfilled in Tulcea, City on the Danube River close to the Danube Delta Biosphere Reserve in order to save the natural resources raw of manganese. In the last three decades, the ferroalloy production plant has over 2.6 million tons of slag. Slag dumping constitutes a significant source of air, water and soil pollution, which adversely affects the environment and human health. Mn present in the slag dump is an environmental pollutant with potentially toxic effects. The results obtained with a leaching method to recover manganese from slag shows two efficient ways to valorize manganese from solid fraction (54%) with size particles between 80 and 315 µm and/or reuse the leaching medium (56% Mn) with a slag size of <80 µm. The motivation of our research is the possibility to recover manganese from slag by saving natural resources of raw of manganese and the remaining fraction can be used as aggregate sources (construction and road rehabilitation by saving extract mineral aggregates and agriculture), in order to decommission the slag dump. The proposed research is in concordance with the sustainable use of natural resources for the achievement of sustainable development of the 2030 Agenda and Waste Management Legislation due of the huge ecological costs regarding non-conforming waste dumping. If we consider the cost-benefit analysis, the environmental future is more important the human health and the benefits on the quality of the population’s health and the environment which are not non-measurable in monetary value.

Suggested Citation

  • Daniela Laura Buruiana & Cristian-Dragos Obreja & Elena Emanuela Herbei & Viorica Ghisman, 2021. "Re-Use of Silico-Manganese Slag," Sustainability, MDPI, vol. 13(21), pages 1-9, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11771-:d:664016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huaiwei, Zhang & Xin, Hong, 2011. "An overview for the utilization of wastes from stainless steel industries," Resources, Conservation & Recycling, Elsevier, vol. 55(8), pages 745-754.
    2. Das, B. & Prakash, S. & Reddy, P.S.R. & Misra, V.N., 2007. "An overview of utilization of slag and sludge from steel industries," Resources, Conservation & Recycling, Elsevier, vol. 50(1), pages 40-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gahan, Chandra Sekhar & Sundkvist, Jan-Eric & Engström, Fredrik & Sandström, Åke, 2011. "Utilisation of steel slags as neutralising agents in biooxidation of a refractory gold concentrate and their influence on the subsequent cyanidation," Resources, Conservation & Recycling, Elsevier, vol. 55(5), pages 541-547.
    2. Lanzerstorfer, Christof & Kröppl, Michaela, 2014. "Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 132-137.
    3. Chen, Jianbiao & Gao, Shuaifei & Xu, Fang & Xu, Wenhao & Yang, Yuanjiang & Kong, Depeng & Wang, Yinfeng & Yao, Huicong & Chen, Haijun & Zhu, Yuezhao & Mu, Lin, 2022. "Influence of moisture and feedstock form on the pyrolysis behaviors, pyrolytic gas production, and residues micro-structure evolutions of an industrial sludge from a steel production enterprise," Energy, Elsevier, vol. 248(C).
    4. Dana-Adriana Iluţiu-Varvara & Claudiu Aciu, 2022. "Metallurgical Wastes as Resources for Sustainability of the Steel Industry," Sustainability, MDPI, vol. 14(9), pages 1-25, May.
    5. Carvalho, S.Z. & Vernilli, F. & Almeida, B. & Demarco, M. & Silva, S.N., 2017. "The recycling effect of BOF slag in the portland cement properties," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 216-220.
    6. Jeong, Yong-Soo & Matsubae-Yokoyama, Kazuyo & Kubo, Hironari & Pak, Jong-Jin & Nagasaka, Tetsuya, 2009. "Substance flow analysis of phosphorus and manganese correlated with South Korean steel industry," Resources, Conservation & Recycling, Elsevier, vol. 53(9), pages 479-489.
    7. Hannu Suopajärvi & Antti Salo & Timo Paananen & Riku Mattila & Timo Fabritius, 2013. "Recycling of Coking Plant Residues in a Finnish Steelworks—Laboratory Study and Replacement Ratio Calculation," Resources, MDPI, vol. 2(2), pages 1-15, May.
    8. Hugo Rondon Quintana & Saieth Chaves-Pabón & Diego A. Escobar, 2018. "Evaluation of a Warm Mix Asphalt Manufactured with Blast Furnace Slag," Modern Applied Science, Canadian Center of Science and Education, vol. 12(12), pages 1-28, December.
    9. Zhang, Tongsheng & Yu, Qijun & Wei, Jiangxiong & Li, Jianxin & Zhang, Pingping, 2011. "Preparation of high performance blended cements and reclamation of iron concentrate from basic oxygen furnace steel slag," Resources, Conservation & Recycling, Elsevier, vol. 56(1), pages 48-55.
    10. Lundkvist, Katarina & Larsson, Mikael & Samuelsson, Caisa, 2013. "Optimisation of a centralised recycling system for steel plant by-products, a logistics perspective," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 29-36.
    11. Raja, R. & Kumar, S., 2023. "Cupola slag as a green concrete-making material and its performance characteristics - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    12. Lobato, Natália Cristina Candian & Villegas, Edwin Auza & Mansur, Marcelo Borges, 2015. "Management of solid wastes from steelmaking and galvanizing processes: A brief review," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 49-57.
    13. Huaiwei, Zhang & Xin, Hong, 2011. "An overview for the utilization of wastes from stainless steel industries," Resources, Conservation & Recycling, Elsevier, vol. 55(8), pages 745-754.
    14. Coman, V. & Robotin, B. & Ilea, P., 2013. "Nickel recovery/removal from industrial wastes: A review," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 229-238.
    15. Lanzerstorfer, Christof, 2015. "Application of air classification for improved recycling of sinter plant dust," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 66-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11771-:d:664016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.