IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5488-d807834.html
   My bibliography  Save this article

Metallurgical Wastes as Resources for Sustainability of the Steel Industry

Author

Listed:
  • Dana-Adriana Iluţiu-Varvara

    (Faculty of Building Services Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania)

  • Claudiu Aciu

    (Faculty of Civil Engineering, Technical University of Cluj-Napoca, 28 Memorandumului Street, 400114 Cluj-Napoca, Romania)

Abstract

The industrial pollution caused by metallurgical waste accumulation has a negative impact on the three environmental factors: soil, air and water. Therefore, the correct management of these wastes would lead to: protection of the environmental factors, the saving of natural resources and sustainability of the steel industry. The purpose of this paper is to assess the chemical and mineralogical compositions of metallurgical wastes landfilled in the Păgida slag dump (Alba County, Romania), for sustainability of the steel industry and metal conservation. The chemical compositions of the two waste samples were analyzed by the XRF (X-ray fluorescence) technique. According to the chemical characterization, magnesium oxide (MgO) has potential to be used as an additional and raw material in the cement industry. The presence of oxides such as CaO, SiO 2 FeO and Al 2 O 3 in the compositions of the metallurgical waste samples indicate that they have the potential for use as clinker materials in cement production. The iron and manganese contents from metallurgical wastes can be reused in the iron and steel industry. The presence of V 2 O 5 and TiO 2 is connected with the making of stainless steel, and for this reason they have the potential to be reused in the stainless steel industry. The predominant chemical compounds are SiO 2 , Fetotal, Cao and MgO. The mineralogical compositions were analyzed by the XRD (X-ray diffraction) technique. The mineralogical compounds presenting reuse potential in different domains are Fayalite, Magnetite, Magnesioferrite and Periclase. The mineralogical compounds from metallurgical wastes can be reused as: raw and/or additional materials in the process from which they originate (steelmaking); raw and/or additional materials in road construction and concrete production; pigments in paints; micronutrients in fertilizers; ore of iron, etc. Then, the theoretical assessments of the recovery potentials of the metals were estimated for slag dumps. Copper (Cu), vanadium (V), molybdenum (Mo) and nickel (Ni) have high recovery potential. The total economic value of the recovery potential of metals from slag dumps was assessed to be USD 1175.7440 million.

Suggested Citation

  • Dana-Adriana Iluţiu-Varvara & Claudiu Aciu, 2022. "Metallurgical Wastes as Resources for Sustainability of the Steel Industry," Sustainability, MDPI, vol. 14(9), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5488-:d:807834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc A. Rosen & Hossam A. Kishawy, 2012. "Sustainable Manufacturing and Design: Concepts, Practices and Needs," Sustainability, MDPI, vol. 4(2), pages 1-21, January.
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Di Gao & Fu-Ping Wang & Yi-Tong Wang & Ya-Nan Zeng, 2020. "Sustainable Utilization of Steel Slag from Traditional Industry and Agriculture to Catalysis," Sustainability, MDPI, vol. 12(21), pages 1-9, November.
    4. Das, B. & Prakash, S. & Reddy, P.S.R. & Misra, V.N., 2007. "An overview of utilization of slag and sludge from steel industries," Resources, Conservation & Recycling, Elsevier, vol. 50(1), pages 40-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergey Fomenko & Sanat Tolendiuly & Ahmet Turan & Adil Akishev, 2022. "Production of Refractory Bricks through Combustion Synthesis from Metallurgical Wastes and the Thermo-Physical Properties of the Products," Sustainability, MDPI, vol. 14(18), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, XiaoLi & Liu, ChenGuang & Li, WenJuan & Evans, Steve & Yin, Yong, 2017. "Effects of key enabling technologies for seru production on sustainable performance," Omega, Elsevier, vol. 66(PB), pages 290-307.
    2. Fotios Misopoulos & Roula Michaelides & Mohammad Afiq Salehuddin & Vicky Manthou & Zenon Michaelides, 2018. "Addressing Organisational Pressures as Drivers towards Sustainability in Manufacturing Projects and Project Management Methodologies," Sustainability, MDPI, vol. 10(6), pages 1-28, June.
    3. Ali Bastas, 2021. "Sustainable Manufacturing Technologies: A Systematic Review of Latest Trends and Themes," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    4. Jasiulewicz-Kaczmarek Małgorzata, 2014. "Is Sustainable Development an Issue for Quality Management?," Foundations of Management, Sciendo, vol. 6(2), pages 51-66, December.
    5. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    6. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    7. CHEN, Helen S.Y., 2020. "Designing Sustainable Humanitarian Supply Chains," OSF Preprints m82ar, Center for Open Science.
    8. Jim Butcher, 2006. "The United Nations International Year of Ecotourism: a critical analysis of development implications," Progress in Development Studies, , vol. 6(2), pages 146-156, April.
    9. Denise Ravet, 2011. "Lean production: the link between supply chain and sustainable development in an international environment," Post-Print hal-00691666, HAL.
    10. Mara Del Baldo, 2012. "Corporate social responsibility and corporate governance in Italian SMEs: the experience of some “spirited businesses”," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 16(1), pages 1-36, February.
    11. Megan Devonald & Nicola Jones & Sally Youssef, 2022. "‘We Have No Hope for Anything’: Exploring Interconnected Economic, Social and Environmental Risks to Adolescents in Lebanon," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    12. Rigby, Dan & Woodhouse, Phil & Young, Trevor & Burton, Michael, 2001. "Constructing a farm level indicator of sustainable agricultural practice," Ecological Economics, Elsevier, vol. 39(3), pages 463-478, December.
    13. Michael Howes & Liana Wortley & Ruth Potts & Aysin Dedekorkut-Howes & Silvia Serrao-Neumann & Julie Davidson & Timothy Smith & Patrick Nunn, 2017. "Environmental Sustainability: A Case of Policy Implementation Failure?," Sustainability, MDPI, vol. 9(2), pages 1-17, January.
    14. Shiferaw, Bekele & Holden, Stein, 1999. "Soil Erosion and Smallholders' Conservation Decisions in the Highlands of Ethiopia," World Development, Elsevier, vol. 27(4), pages 739-752, April.
    15. Ibrahim Ari & Muammer Koc, 2018. "Sustainable Financing for Sustainable Development: Understanding the Interrelations between Public Investment and Sovereign Debt," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    16. Parnphumeesup, Piya & Kerr, Sandy A., 2011. "Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand," Energy Policy, Elsevier, vol. 39(6), pages 3591-3601, June.
    17. Pengji Wang & Adrian T. H. Kuah & Qinye Lu & Caroline Wong & K. Thirumaran & Emmanuel Adegbite & Wesley Kendall, 2021. "The impact of value perceptions on purchase intention of sustainable luxury brands in China and the UK," Journal of Brand Management, Palgrave Macmillan, vol. 28(3), pages 325-346, May.
    18. Christoph M. Schmidt & Nils aus dem Moore, 2014. "Wie geht es uns? Die W3-Indikatoren für eine neue Wohlstandsmessung," RWI Positionen, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, pages 16, 03.
    19. Katundu Imasiku & Valerie M. Thomas & Etienne Ntagwirumugara, 2020. "Unpacking Ecological Stress from Economic Activities for Sustainability and Resource Optimization in Sub-Saharan Africa," Sustainability, MDPI, vol. 12(9), pages 1-12, April.
    20. Chin-Shan Lu & Kuo-Chung Shang & Chi-Chang Lin, 2016. "Examining sustainability performance at ports: port managers’ perspectives on developing sustainable supply chains," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(8), pages 909-927, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5488-:d:807834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.