IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v58y2020i16p4964-4979.html
   My bibliography  Save this article

Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail

Author

Listed:
  • Sushil Punia
  • Konstantinos Nikolopoulos
  • Surya Prakash Singh
  • Jitendra K. Madaan
  • Konstantia Litsiou

Abstract

This paper proposes a novel forecasting method that combines the deep learning method – long short-term memory (LSTM) networks and random forest (RF). The proposed method can model complex relationships of both temporal and regression type which gives it an edge in accuracy over other forecasting methods. We evaluated the new method on a real-world multivariate dataset from a multi-channel retailer. We benchmark the forecasting performance of the new proposition against neural networks, multiple regression, ARIMAX, LSTM networks, and RF. We employed forecasting performance metrics to measure bias, accuracy, and variance, and the empirical evidence suggests that the new proposition is (statistically) significantly better. Furthermore, our method ranks the explanatory variables in terms of their relative importance. The empirical evaluations are replicated for longer forecasting horizons, and online and offline channels and the same conclusions hold; thus, advocating for the robustness of our forecasting proposition as well as the suitability in multi-channel retail demand forecasting.

Suggested Citation

  • Sushil Punia & Konstantinos Nikolopoulos & Surya Prakash Singh & Jitendra K. Madaan & Konstantia Litsiou, 2020. "Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail," International Journal of Production Research, Taylor & Francis Journals, vol. 58(16), pages 4964-4979, July.
  • Handle: RePEc:taf:tprsxx:v:58:y:2020:i:16:p:4964-4979
    DOI: 10.1080/00207543.2020.1735666
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2020.1735666
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2020.1735666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Henzel & Łukasz Wróbel & Marcin Fice & Marek Sikora, 2022. "Energy Consumption Forecasting for the Digital-Twin Model of the Building," Energies, MDPI, vol. 15(12), pages 1-21, June.
    2. Marek Vochozka & Jaromir Vrbka & Petr Suler, 2020. "Bankruptcy or Success? The Effective Prediction of a Company’s Financial Development Using LSTM," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    3. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    4. Li, Xishu & Yin, Ying & Manrique, David Vergara & Bäck, Thomas, 2021. "Lifecycle forecast for consumer technology products with limited sales data," International Journal of Production Economics, Elsevier, vol. 239(C).
    5. Jin, Jiahuan & Ma, Mingyu & Jin, Huan & Cui, Tianxiang & Bai, Ruibin, 2023. "Container terminal daily gate in and gate out forecasting using machine learning methods," Transport Policy, Elsevier, vol. 132(C), pages 163-174.
    6. Thais de Castro Moraes & Jiancheng Qin & Xue-Ming Yuan & Ek Peng Chew, 2023. "Evolving Hybrid Deep Neural Network Models for End-to-End Inventory Ordering Decisions," Logistics, MDPI, vol. 7(4), pages 1-18, November.
    7. Carlos Cuartas & Jose Aguilar, 2023. "Hybrid algorithm based on reinforcement learning for smart inventory management," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 123-149, January.
    8. Omar, Haytham & Klibi, Walid & Babai, M. Zied & Ducq, Yves, 2023. "Basket data-driven approach for omnichannel demand forecasting," International Journal of Production Economics, Elsevier, vol. 257(C).
    9. Mohammadhanif Dasoomi & Ali Naderan & Tofigh Allahviranloo, 2023. "Predicting the Choice of Online or Offline Shopping Trips Using a Deep Neural Network Model and Time Series Data: A Case Study of Tehran, Iran," Sustainability, MDPI, vol. 15(20), pages 1-15, October.
    10. Truong Ngoc Cuong & Le Ngoc Bao Long & Hwan-Seong Kim & Sam-Sang You, 2023. "Data analytics and throughput forecasting in port management systems against disruptions: a case study of Busan Port," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(1), pages 61-89, March.
    11. Keun Hee Lee & Mali Abdollahian & Sergei Schreider & Sona Taheri, 2023. "Supply Chain Demand Forecasting and Price Optimisation Models with Substitution Effect," Mathematics, MDPI, vol. 11(11), pages 1-28, May.
    12. Arnab Mitra & Arnav Jain & Avinash Kishore & Pravin Kumar, 2022. "A Comparative Study of Demand Forecasting Models for a Multi-Channel Retail Company: A Novel Hybrid Machine Learning Approach," SN Operations Research Forum, Springer, vol. 3(4), pages 1-22, December.
    13. Nikolopoulos, Konstantinos, 2021. "We need to talk about intermittent demand forecasting," European Journal of Operational Research, Elsevier, vol. 291(2), pages 549-559.
    14. Paweł Więcek & Daniel Kubek, 2024. "The Impact Time Series Selected Characteristics on the Fuel Demand Forecasting Effectiveness Based on Autoregressive Models and Markov Chains," Energies, MDPI, vol. 17(16), pages 1-18, August.
    15. Azadi, Majid & Yousefi, Saeed & Farzipoor Saen, Reza & Shabanpour, Hadi & Jabeen, Fauzia, 2023. "Forecasting sustainability of healthcare supply chains using deep learning and network data envelopment analysis," Journal of Business Research, Elsevier, vol. 154(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:58:y:2020:i:16:p:4964-4979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.