IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-023-05447-7.html
   My bibliography  Save this article

Intermittent demand forecasting with transformer neural networks

Author

Listed:
  • G. Peter Zhang

    (Georgia State University)

  • Yusen Xia

    (Georgia State University)

  • Maohua Xie

    (Georgia State University)

Abstract

Intermittent demand forecasting is an important yet challenging task in many organizations. While prior research has been focused on traditional methods such as Croston’s method and its variants, limited research has been conducted using advanced machine learning or deep learning methods. In this study, we introduce Transformer, a recently developed deep learning approach, to forecast intermittent demand. Its effectiveness is empirically tested with a dataset of 925 intermittent demand items from an airline spare parts provider and compared with that of two traditional methods such as Croston’s and the Syntetos–Boylan approximation as well as several popular neural network architectures including feedforward neural networks, recurrent neural networks, and long short-term memory. Our results based on six different forecasting performance measures show that Transformer performs very well against other methods in a variety of settings. We also examine how data sparsity impacts model performance and find that different models perform similarly when sparsity is low. Although the performance of all models generally gets worse as the sparsity level increases, the advantage of Transformer over other models increases with sparsity.

Suggested Citation

  • G. Peter Zhang & Yusen Xia & Maohua Xie, 2024. "Intermittent demand forecasting with transformer neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 1051-1072, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05447-7
    DOI: 10.1007/s10479-023-05447-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05447-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05447-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-023-05447-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.