IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v179y2016icp259-272.html
   My bibliography  Save this article

A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance

Author

Listed:
  • Liu, Ying
  • Dong, Haibo
  • Lohse, Niels
  • Petrovic, Sanja

Abstract

Increasing energy price and requirements to reduce emission are new challenges faced by manufacturing enterprises. A considerable amount of energy is wasted by machines due to their underutilisation. Consequently, energy saving can be achieved by turning off the machines when they lay idle for a comparatively long period. Otherwise, turning the machine off and back on will consume more energy than leave it stay idle. Thus, an effective way to reduce energy consumption at the system level is by employing intelligent scheduling techniques which are capable of integrating fragmented short idle periods on the machines into large ones. Such scheduling will create opportunities for switching off underutilised resources while at the same time maintaining the production performance. This paper introduces a model for the bi-objective optimisation problem that minimises the total non-processing electricity consumption and total weighted tardiness in a job shop. The Turn off/Turn on is applied as one of the electricity saving approaches. A novel multi-objective genetic algorithm based on NSGA-II is developed. Two new steps are introduced for the purpose of expanding the solution pool and then selecting the elite solutions. The research presented in this paper is focused on the classical job shop environment, which is widely used in the manufacturing industry and provides considerable opportunities for energy saving. The algorithm is validated on job shop problem instances to show its effectiveness.

Suggested Citation

  • Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.
  • Handle: RePEc:eee:proeco:v:179:y:2016:i:c:p:259-272
    DOI: 10.1016/j.ijpe.2016.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552731630127X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2016.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    2. SubaI, Corinne & Baptiste, Pierre & Niel, Eric, 2006. "Scheduling issues for environmentally responsible manufacturing: The case of hoist scheduling in an electroplating line," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 74-87, February.
    3. Sabuncuoglu, I. & Bayiz, M., 1999. "Job shop scheduling with beam search," European Journal of Operational Research, Elsevier, vol. 118(2), pages 390-412, October.
    4. Zanoni, S. & Bettoni, L. & Glock, C. H., 2014. "Energy Implications in a Two-Stage Production System with Controllable Production Rates," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62117, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    6. Tang, Lixin & Wang, Gongshu, 2008. "Decision support system for the batching problems of steelmaking and continuous-casting production," Omega, Elsevier, vol. 36(6), pages 976-991, December.
    7. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex," European Journal of Operational Research, Elsevier, vol. 124(2), pages 267-282, July.
    8. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    9. Mansouri, S. Afshin & Aktas, Emel & Besikci, Umut, 2016. "Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption," European Journal of Operational Research, Elsevier, vol. 248(3), pages 772-788.
    10. Zanoni, Simone & Bettoni, Laura & Glock, Christoph H., 2014. "Energy implications in a two-stage production system with controllable production rates," International Journal of Production Economics, Elsevier, vol. 149(C), pages 164-171.
    11. Artigues, Christian & Lopez, Pierre & Haït, Alain, 2013. "The energy scheduling problem: Industrial case-study and constraint propagation techniques," International Journal of Production Economics, Elsevier, vol. 143(1), pages 13-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    2. Zhongwei Zhang & Lihui Wu & Tao Peng & Shun Jia, 2018. "An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment," Sustainability, MDPI, vol. 11(1), pages 1-21, December.
    3. Rami Naimi & Maroua Nouiri & Olivier Cardin, 2021. "A Q-Learning Rescheduling Approach to the Flexible Job Shop Problem Combining Energy and Productivity Objectives," Sustainability, MDPI, vol. 13(23), pages 1-36, November.
    4. Wichmann, Matthias Gerhard & Johannes, Christoph & Spengler, Thomas Stefan, 2019. "Energy-oriented Lot-Sizing and Scheduling considering energy storages," International Journal of Production Economics, Elsevier, vol. 216(C), pages 204-214.
    5. Anghinolfi, Davide & Paolucci, Massimo & Ronco, Roberto, 2021. "A bi-objective heuristic approach for green identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 289(2), pages 416-434.
    6. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    7. Ivan Ferretti & Matteo Camparada & Lucio Enrico Zavanella, 2022. "Queuing Theory-Based Design Methods for the Definition of Power Requirements in Manufacturing Systems," Energies, MDPI, vol. 15(20), pages 1-14, October.
    8. Min Dai & Ziwei Zhang & Adriana Giret & Miguel A. Salido, 2019. "An Enhanced Estimation of Distribution Algorithm for Energy-Efficient Job-Shop Scheduling Problems with Transportation Constraints," Sustainability, MDPI, vol. 11(11), pages 1-23, May.
    9. Shun Jia & Shang Wang & Jingxiang Lv & Wei Cai & Na Zhang & Zhongwei Zhang & Shuowei Bai, 2021. "Multi-Objective Optimization of CNC Turning Process Parameters Considering Transient-Steady State Energy Consumption," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
    10. Iqra Asghar & Biswajit Sarkar & Sung-jun Kim, 2019. "Economic Analysis of an Integrated Production–Inventory System under Stochastic Production Capacity and Energy Consumption," Energies, MDPI, vol. 12(16), pages 1-27, August.
    11. Feng, Yanling & Li, Guo & Sethi, Suresh P., 2018. "A three-layer chromosome genetic algorithm for multi-cell scheduling with flexible routes and machine sharing," International Journal of Production Economics, Elsevier, vol. 196(C), pages 269-283.
    12. Matthias Gerhard Wichmann & Christoph Johannes & Thomas Stefan Spengler, 2019. "An extension of the general lot-sizing and scheduling problem (GLSP) with time-dependent energy prices," Journal of Business Economics, Springer, vol. 89(5), pages 481-514, July.
    13. Park, Myoung-Ju & Ham, Andy, 2022. "Energy-aware flexible job shop scheduling under time-of-use pricing," International Journal of Production Economics, Elsevier, vol. 248(C).
    14. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    15. Masmoudi, Oussama & Delorme, Xavier & Gianessi, Paolo, 2019. "Job-shop scheduling problem with energy consideration," International Journal of Production Economics, Elsevier, vol. 216(C), pages 12-22.
    16. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    17. Chen Peng & Tao Peng & Yi Zhang & Renzhong Tang & Luoke Hu, 2018. "Minimising Non-Processing Energy Consumption and Tardiness Fines in a Mixed-Flow Shop," Energies, MDPI, vol. 11(12), pages 1-15, December.
    18. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
    2. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    3. Matthias Gerhard Wichmann & Christoph Johannes & Thomas Stefan Spengler, 2019. "An extension of the general lot-sizing and scheduling problem (GLSP) with time-dependent energy prices," Journal of Business Economics, Springer, vol. 89(5), pages 481-514, July.
    4. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    5. Beck, Fabian G. & Biel, Konstantin & Glock, Christoph H., 2019. "Integration of energy aspects into the economic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 399-410.
    6. Wichmann, Matthias Gerhard & Johannes, Christoph & Spengler, Thomas Stefan, 2019. "Energy-oriented Lot-Sizing and Scheduling considering energy storages," International Journal of Production Economics, Elsevier, vol. 216(C), pages 204-214.
    7. Trevino-Martinez, Samuel & Sawhney, Rapinder & Shylo, Oleg, 2022. "Energy-carbon footprint optimization in sequence-dependent production scheduling," Applied Energy, Elsevier, vol. 315(C).
    8. Konstantin Biel & Christoph H. Glock, 2017. "Prerequisites of efficient decentralized waste heat recovery and energy storage in production planning," Journal of Business Economics, Springer, vol. 87(1), pages 41-72, January.
    9. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    10. Zhou, Shengchao & Jin, Mingzhou & Du, Ni, 2020. "Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times," Energy, Elsevier, vol. 209(C).
    11. Alvarez-Meaza, Izaskun & Zarrabeitia-Bilbao, Enara & Rio-Belver, Rosa-María & Garechana-Anacabe, Gaizka, 2021. "Green scheduling to achieve green manufacturing: Pursuing a research agenda by mapping science," Technology in Society, Elsevier, vol. 67(C).
    12. Desta, Alemayehu Addisu & Badis, Hakim & George, Laurent, 2018. "Demand response scheduling in industrial asynchronous production lines constrained by available power and production rate," Applied Energy, Elsevier, vol. 230(C), pages 1414-1424.
    13. Kim, Hyunjung & Kim, Eungab, 2022. "A hybrid manufacturing system with demand for intermediate goods and controllable make-to-stock production rate," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1244-1257.
    14. Deming Lei & Youlian Zheng & Xiuping Guo, 2017. "A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption," International Journal of Production Research, Taylor & Francis Journals, vol. 55(11), pages 3126-3140, June.
    15. Masmoudi, Oussama & Delorme, Xavier & Gianessi, Paolo, 2019. "Job-shop scheduling problem with energy consideration," International Journal of Production Economics, Elsevier, vol. 216(C), pages 12-22.
    16. Xiaoyan Li & Xuedong Liang & Zhi Li, 2023. "The Strategy of Strengthening Efficiency and Environmental Performance of Product Changeover in the Multiproduct Production System," SAGE Open, , vol. 13(3), pages 21582440231, September.
    17. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    18. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    19. Ghorbanzadeh, Masoumeh & Ranjbar, Mohammad, 2023. "Energy-aware production scheduling in the flow shop environment under sequence-dependent setup times, group scheduling and renewable energy constraints," European Journal of Operational Research, Elsevier, vol. 307(2), pages 519-537.
    20. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:179:y:2016:i:c:p:259-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.