IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v36y2008i6p976-991.html
   My bibliography  Save this article

Decision support system for the batching problems of steelmaking and continuous-casting production

Author

Listed:
  • Tang, Lixin
  • Wang, Gongshu

Abstract

This paper investigates two batching problems for steelmaking and continuous-casting (SCC) production in an integrated iron and steel enterprise. The tasks of the problems are to make the decisions as how to consolidate ordered slabs into charges, and then how to group charges into casts. The effective decisions on these batching problems can help to balance the requirements of materials in downstream production lines, improve the customer satisfaction levels, and reduce production costs (including reduction of open ordered slabs, less slabs quality upgrading, reduction of steel-grade changeovers, and reduction of inefficient utilization of tundishes lives). We first formulate the problems as integer-programming models by consider practical constraints and requirements, and then develop the two heuristic algorithms for the corresponding batching problems. By embedding above models and algorithms, we develop decision support system (DSS) software with interactive planning editor. The DSS has been tested by using practical data set collected from the steelmaking plant in Baosteel which is one of the most advanced iron and steel enterprises in China. Computational experiments demonstrate that the models and algorithms developed can generate the satisfactory solutions when they work together with the planning editor in the DSS.

Suggested Citation

  • Tang, Lixin & Wang, Gongshu, 2008. "Decision support system for the batching problems of steelmaking and continuous-casting production," Omega, Elsevier, vol. 36(6), pages 976-991, December.
  • Handle: RePEc:eee:jomega:v:36:y:2008:i:6:p:976-991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(07)00122-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferretti, Ivan & Zanoni, Simone & Zavanella, Lucio, 2006. "Production-inventory scheduling using Ant System metaheuristic," International Journal of Production Economics, Elsevier, vol. 104(2), pages 317-326, December.
    2. Ioannou, George & Mavri, Maria, 2007. "Performance-Net: A Decision Support System for Reconfiguring a Bank's Branch Network," Omega, Elsevier, vol. 35(2), pages 190-201, April.
    3. Lopez, Leo & Carter, Michael W. & Gendreau, Michel, 1998. "The hot strip mill production scheduling problem: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 317-335, April.
    4. Zanoni, Simone & Zavanella, Lucio, 2005. "Model and analysis of integrated production-inventory system: The case of steel production," International Journal of Production Economics, Elsevier, vol. 93(1), pages 197-205, January.
    5. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2000. "A mathematical programming model for scheduling steelmaking-continuous casting production," European Journal of Operational Research, Elsevier, vol. 120(2), pages 423-435, January.
    6. Bellabdaoui, A. & Teghem, J., 2006. "A mixed-integer linear programming model for the continuous casting planning," International Journal of Production Economics, Elsevier, vol. 104(2), pages 260-270, December.
    7. Gomes da Silva, Carlos & Figueira, José & Lisboa, João & Barman, Samir, 2006. "An interactive decision support system for an aggregate production planning model based on multiple criteria mixed integer linear programming," Omega, Elsevier, vol. 34(2), pages 167-177, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lixin Tang & Ying Meng & Zhi-Long Chen & Jiyin Liu, 2016. "Coil Batching to Improve Productivity and Energy Utilization in Steel Production," Manufacturing & Service Operations Management, INFORMS, vol. 18(2), pages 262-279, May.
    2. Marvizadeh, S. Zamiri & Choobineh, F.F., 2013. "Reducing the number of setups for CNC punch presses," Omega, Elsevier, vol. 41(2), pages 226-235.
    3. Torres, Nelson & Greivel, Gus & Betz, Joshua & Moreno, Eduardo & Newman, Alexandra & Thomas, Brian, 2024. "Optimizing steel coil production schedules under continuous casting and hot rolling," European Journal of Operational Research, Elsevier, vol. 314(2), pages 496-508.
    4. Zhang, Ruijun & Lu, Jie & Zhang, Guangquan, 2011. "A knowledge-based multi-role decision support system for ore blending cost optimization of blast furnaces," European Journal of Operational Research, Elsevier, vol. 215(1), pages 194-203, November.
    5. Slotnick, Susan A., 2011. "Optimal and heuristic lead-time quotation for an integrated steel mill with a minimum batch size," European Journal of Operational Research, Elsevier, vol. 210(3), pages 527-536, May.
    6. Lixin Tang & Gongshu Wang & Jiyin Liu & Jingyi Liu, 2011. "A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous‐casting production," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(4), pages 370-388, June.
    7. Lixin Tang & Gongshu Wang & Zhi-Long Chen, 2014. "Integrated Charge Batching and Casting Width Selection at Baosteel," Operations Research, INFORMS, vol. 62(4), pages 772-787, August.
    8. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.
    9. Lixin Tang & Ying Meng & Gongshu Wang & Zhi-Long Chen & Jiyin Liu & Guofen Hu & Lijun Chen & Bo Zhang, 2014. "Operations Research Transforms Baosteel’s Operations," Interfaces, INFORMS, vol. 44(1), pages 22-38, February.
    10. Jing Wu & Dan Zhang & Yang Yang & Gongshu Wang & Lijie Su, 2022. "Multi-Stage Multi-Product Production and Inventory Planning for Cold Rolling under Random Yield," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    11. Gribkovskaia, Irina V. & Kovalev, Sergey & Werner, Frank, 2010. "Batching for work and rework processes on dedicated facilities to minimize the makespan," Omega, Elsevier, vol. 38(6), pages 522-527, December.
    12. Liu, Min & Jiang, Shenglong & Wu, Cheng, 2015. "A soft-decision based two-layered scheduling approach for uncertain steelmaking-continuous casting processAuthor-Name: Hao, Jinghua," European Journal of Operational Research, Elsevier, vol. 244(3), pages 966-979.
    13. Wichmann, Matthias Gerhard & Spengler, Thomas Stefan, 2015. "Slab scheduling at parallel continuous casters," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 551-562.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Jiménez-Martín & Alfonso Mateos & Josefa Z. Hernández, 2021. "Aluminium Parts Casting Scheduling Based on Simulated Annealing," Mathematics, MDPI, vol. 9(7), pages 1-18, March.
    2. Lixin Tang & Gongshu Wang & Jiyin Liu & Jingyi Liu, 2011. "A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous‐casting production," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(4), pages 370-388, June.
    3. Torres, Nelson & Greivel, Gus & Betz, Joshua & Moreno, Eduardo & Newman, Alexandra & Thomas, Brian, 2024. "Optimizing steel coil production schedules under continuous casting and hot rolling," European Journal of Operational Research, Elsevier, vol. 314(2), pages 496-508.
    4. Dayong Han & Qiuhua Tang & Zikai Zhang & Zixiang Li, 2020. "An Improved Migrating Birds Optimization Algorithm for a Hybrid Flow Shop Scheduling within Steel Plants," Mathematics, MDPI, vol. 8(10), pages 1-28, September.
    5. Tang, Lixin & Liu, Jiyin & Rong, Aiying & Yang, Zihou, 2001. "A review of planning and scheduling systems and methods for integrated steel production," European Journal of Operational Research, Elsevier, vol. 133(1), pages 1-20, August.
    6. Bellabdaoui, A. & Teghem, J., 2006. "A mixed-integer linear programming model for the continuous casting planning," International Journal of Production Economics, Elsevier, vol. 104(2), pages 260-270, December.
    7. Pieter Moerloose & Broos Maenhout, 2023. "A two-stage local search heuristic for solving the steelmaking continuous casting scheduling problem with dual shared-resource and blocking constraints," Operational Research, Springer, vol. 23(1), pages 1-43, March.
    8. Pan, Quan-Ke, 2016. "An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling," European Journal of Operational Research, Elsevier, vol. 250(3), pages 702-714.
    9. Casado, Silvia & Laguna, Manuel & Pacheco, Joaquín & Puche, Julio C., 2020. "Grouping products for the optimization of production processes: A case in the steel manufacturing industry," European Journal of Operational Research, Elsevier, vol. 286(1), pages 190-202.
    10. Slotnick, Susan A., 2011. "Optimal and heuristic lead-time quotation for an integrated steel mill with a minimum batch size," European Journal of Operational Research, Elsevier, vol. 210(3), pages 527-536, May.
    11. Su, Fuyong & Kong, Linglu & Wang, Hui & Wen, Zhi, 2021. "Modeling and application for rolling scheduling problem based on TSP," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    12. Lixin Tang & Gongshu Wang & Zhi-Long Chen, 2014. "Integrated Charge Batching and Casting Width Selection at Baosteel," Operations Research, INFORMS, vol. 62(4), pages 772-787, August.
    13. D de Ladurantaye & M Gendreau & J-Y Potvin, 2007. "Scheduling a hot rolling mill," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 288-300, March.
    14. Caner TaskIn, Z. & Tamer Ünal, A., 2009. "Tactical level planning in float glass manufacturing with co-production, random yields and substitutable products," European Journal of Operational Research, Elsevier, vol. 199(1), pages 252-261, November.
    15. Ricardo Pérez-Rodríguez, 2024. "A Radial Memetic Algorithm to Resolve the No-Wait Job-Shop Scheduling Problem," Mathematics, MDPI, vol. 12(21), pages 1-15, October.
    16. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.
    17. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    18. Ferretti, Ivan & Zanoni, Simone & Zavanella, Lucio, 2006. "Production-inventory scheduling using Ant System metaheuristic," International Journal of Production Economics, Elsevier, vol. 104(2), pages 317-326, December.
    19. F A F Ferreira & S P Santos & P M M Rodrigues, 2011. "Adding value to bank branch performance evaluation using cognitive maps and MCDA: a case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1320-1333, July.
    20. Ray, Subhash, 2016. "Cost efficiency in an Indian bank branch network: A centralized resource allocation model," Omega, Elsevier, vol. 65(C), pages 69-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:36:y:2008:i:6:p:976-991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.