IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2018i1p179-d194181.html
   My bibliography  Save this article

An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment

Author

Listed:
  • Zhongwei Zhang

    (School of Mechanical & Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China
    State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Lihui Wu

    (School of Mechanical & Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China)

  • Tao Peng

    (State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Shun Jia

    (Department of Industrial Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

Nowadays, manufacturing industry is under increasing pressure to save energy and reduce emissions, and thereby enhancing the energy efficiency of the machining system (MS) through operational methods on the system-level has attracted more attention. Energy-efficient scheduling (ES) has proved to be a typical measure suitable for all shop types, and an energy-efficient mechanism that a machine can be switched off and back on if it waits for a new job for a relatively long period is another proven effective energy-saving measure. Furthermore, their combination has been fully investigated in a single machine, flow shop and job shop, and the improvement in energy efficiency is significant compared with only applying ES for MS. However, whether such two energy-saving measures can be integrated in a flexible job shop environment is a gap in the existing study. To address this, a scheduling method applying an energy-efficient mechanism is proposed for a flexible job shop environment and the corresponding mathematical model, namely the energy-efficient flexible job shop scheduling (EFJSS) model, considering total production energy consumption (EC) and makespan is formulated. Besides, transportation as well as its impact on EC is taken into account in this model for practical application. Furthermore, a solution approach based on the non-dominated sorting genetic algorithm-II (NSGA-II) is adopted, which can avoid the interference of subjective factors and help select a suitable machine for each operation and undertake rational operation sequencing simultaneously. Moreover, experimental results confirm the validity of the improved energy-efficient scheduling approach in a flexible job shop environment and the effectiveness of the solution.

Suggested Citation

  • Zhongwei Zhang & Lihui Wu & Tao Peng & Shun Jia, 2018. "An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment," Sustainability, MDPI, vol. 11(1), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:179-:d:194181
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maroua Nouiri & Abdelghani Bekrar & Abderezak Jemai & Smail Niar & Ahmed Chiheb Ammari, 2018. "An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 603-615, March.
    2. Xiuli Wu & Xianli Shen & Qi Cui, 2018. "Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy," Sustainability, MDPI, vol. 10(3), pages 1-30, March.
    3. Sanober Hassan Khattak & Michael Oates & Rick Greenough, 2018. "Towards Improved Energy and Resource Management in Manufacturing," Energies, MDPI, vol. 11(4), pages 1-15, April.
    4. Jacek Błażewicz & Klaus H. Ecker & Erwin Pesch & Günter Schmidt & Jan Węglarz, 2007. "Handbook on Scheduling," International Handbooks on Information Systems, Springer, number 978-3-540-32220-7, November.
    5. Emilio Carrizosa & Dolores Romero-Morales, 2001. "Combining Minsum And Minmax: A Goal Programming Approach," Operations Research, INFORMS, vol. 49(1), pages 169-174, February.
    6. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    7. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    2. Fei Luan & Zongyan Cai & Shuqiang Wu & Shi Qiang Liu & Yixin He, 2019. "Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm," Mathematics, MDPI, vol. 7(8), pages 1-17, August.
    3. Wichmann, Matthias Gerhard & Johannes, Christoph & Spengler, Thomas Stefan, 2019. "Energy-oriented Lot-Sizing and Scheduling considering energy storages," International Journal of Production Economics, Elsevier, vol. 216(C), pages 204-214.
    4. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    5. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.
    6. Heydar, Mojtaba & Mardaneh, Elham & Loxton, Ryan, 2022. "Approximate dynamic programming for an energy-efficient parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 363-380.
    7. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    8. Park, Myoung-Ju & Ham, Andy, 2022. "Energy-aware flexible job shop scheduling under time-of-use pricing," International Journal of Production Economics, Elsevier, vol. 248(C).
    9. Masmoudi, Oussama & Delorme, Xavier & Gianessi, Paolo, 2019. "Job-shop scheduling problem with energy consideration," International Journal of Production Economics, Elsevier, vol. 216(C), pages 12-22.
    10. Matthias Gerhard Wichmann & Christoph Johannes & Thomas Stefan Spengler, 2019. "An extension of the general lot-sizing and scheduling problem (GLSP) with time-dependent energy prices," Journal of Business Economics, Springer, vol. 89(5), pages 481-514, July.
    11. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    12. Beck, Fabian G. & Biel, Konstantin & Glock, Christoph H., 2019. "Integration of energy aspects into the economic lot scheduling problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 399-410.
    13. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    14. Malgorzata Sterna & Kateryna Czerniachowska, 2017. "Polynomial Time Approximation Scheme for Two Parallel Machines Scheduling with a Common Due Date to Maximize Early Work," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 927-944, September.
    15. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    16. Mobin, Mohammadsadegh & Li, Zhaojun & Cheraghi, S. Hossein & Wu, Gongyu, 2019. "An approach for design Verification and Validation planning and optimization for new product reliability improvement," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    17. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    18. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    19. Leilei Meng & Biao Zhang & Kaizhou Gao & Peng Duan, 2022. "An MILP Model for Energy-Conscious Flexible Job Shop Problem with Transportation and Sequence-Dependent Setup Times," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    20. Daissy Lorena Restrepo-Serna & Jimmy Anderson Martínez-Ruano & Carlos Ariel Cardona-Alzate, 2018. "Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material," Energies, MDPI, vol. 11(12), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2018:i:1:p:179-:d:194181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.