IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v87y2017i1d10.1007_s11573-016-0804-x.html
   My bibliography  Save this article

Prerequisites of efficient decentralized waste heat recovery and energy storage in production planning

Author

Listed:
  • Konstantin Biel

    (Technische Universität Darmstadt)

  • Christoph H. Glock

    (Technische Universität Darmstadt)

Abstract

Following the scarcity of resources, rising energy prices, and an increasing awareness of the role manufacturing plays in the generation of greenhouse gas emissions, the usage of energy has more and more been considered in research on production planning and scheduling in recent years. Time-varying energy prices, which have been introduced to penalize energy usage during peak-demand periods and which are supposed to smooth energy demand, have added a new aspect to this stream of research. This article studies how the integration of a waste heat recovery system, which can convert industrial waste heat into electrical energy, along with an electrical energy storage system can balance the positive and negative effects of energy peak prices on the production plan in a serial multi-stage production system. After developing an appropriate model, we investigate how the use of the waste heat recovery system and the electrical energy storage system impact production planning. In a numerical analysis, we investigate under which conditions the recovery of waste heat combined with the opportunity to store energy provides practitioners with an efficient tool to lower total energy usage and to better react to time-varying energy prices, and thus to reduce total energy cost.

Suggested Citation

  • Konstantin Biel & Christoph H. Glock, 2017. "Prerequisites of efficient decentralized waste heat recovery and energy storage in production planning," Journal of Business Economics, Springer, vol. 87(1), pages 41-72, January.
  • Handle: RePEc:spr:jbecon:v:87:y:2017:i:1:d:10.1007_s11573-016-0804-x
    DOI: 10.1007/s11573-016-0804-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-016-0804-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-016-0804-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    2. Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
    3. Fernandez, Mayela & Li, Lin & Sun, Zeyi, 2013. "“Just-for-Peak” buffer inventory for peak electricity demand reduction of manufacturing systems," International Journal of Production Economics, Elsevier, vol. 146(1), pages 178-184.
    4. Biel, K. & Glock, C. H., 2014. "On the use of waste energy in a two-stage production system with controllable production rates," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 66459, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    6. Schneider, Maximilian & Biel, K. & Pfaller, S. & Schaede, Hendrik & Rinderknecht, Stephan & Glock, C. H., 2015. "Optimal Sizing of Electrical Energy Storage Systems using Inventory Models," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 74986, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Zanoni, Simone & Bettoni, Laura & Glock, Christoph H., 2014. "Energy implications in a two-stage production system with controllable production rates," International Journal of Production Economics, Elsevier, vol. 149(C), pages 164-171.
    8. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    9. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    10. Hasanbeigi, Ali & Price, Lynn, 2012. "A review of energy use and energy efficiency technologies for the textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3648-3665.
    11. Ashok, S., 2006. "Peak-load management in steel plants," Applied Energy, Elsevier, vol. 83(5), pages 413-424, May.
    12. Denton, Frank T. & Jefferies, Kevan L. & Mountain, Dean C. & Robb, A. Leslie & Spencer, Byron G., 1987. "The response of an industrial firm to alternative electricity rate structures : An optimization model for simulation applications," Resources and Energy, Elsevier, vol. 9(4), pages 327-346, December.
    13. Fang, Hao & Xia, Jianjun & Zhu, Kan & Su, Yingbo & Jiang, Yi, 2013. "Industrial waste heat utilization for low temperature district heating," Energy Policy, Elsevier, vol. 62(C), pages 236-246.
    14. repec:dar:wpaper:74992 is not listed on IDEAS
    15. Xiuli Chao & Frank Y. Chen, 2005. "An Optimal Production and Shutdown Strategy when a Supplier Offers an Incentive Program," Manufacturing & Service Operations Management, INFORMS, vol. 7(2), pages 130-143, March.
    16. Liu, Yan & Yang, Jian & Wang, Jin & Cheng, Zhi-long & Wang, Qiu-wang, 2014. "Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed," Energy, Elsevier, vol. 67(C), pages 370-380.
    17. Wang, Yong & Li, Lin, 2013. "Time-of-use based electricity demand response for sustainable manufacturing systems," Energy, Elsevier, vol. 63(C), pages 233-244.
    18. Zanoni, S. & Bettoni, L. & Glock, C. H., 2014. "Energy Implications in a Two-Stage Production System with Controllable Production Rates," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62117, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    19. Nilsson, K. & Söderström, M., 1993. "Industrial applications of production planning with optimal electricity demand," Applied Energy, Elsevier, vol. 46(2), pages 181-192.
    20. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    21. Quader, M. Abdul & Ahmed, Shamsuddin & Ghazilla, Raja Ariffin Raja & Ahmed, Shameem & Dahari, Mahidzal, 2015. "A comprehensive review on energy efficient CO2 breakthrough technologies for sustainable green iron and steel manufacturing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 594-614.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gulnara D. Amanova & Bibigul Zh. Akimova & Asem A. Kazhmukhametova & Luiza P. Moldashbayeva & Zinegul O. Urazbayeva & Ryskul S. Danayeva, 2020. "Accounting of the Enterprise s Financial Reserves at the Integration of Energy-Saving Principles and Transition to the Concept of Energy-Saving Production," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 374-381.
    2. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    3. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    4. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    2. Zavanella, Lucio & Zanoni, Simone & Ferretti, Ivan & Mazzoldi, Laura, 2015. "Energy demand in production systems: A Queuing Theory perspective," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 393-400.
    3. Matthias Gerhard Wichmann & Christoph Johannes & Thomas Stefan Spengler, 2019. "An extension of the general lot-sizing and scheduling problem (GLSP) with time-dependent energy prices," Journal of Business Economics, Springer, vol. 89(5), pages 481-514, July.
    4. Sven Schulz & Udo Buscher & Liji Shen, 2020. "Multi-objective hybrid flow shop scheduling with variable discrete production speed levels and time-of-use energy prices," Journal of Business Economics, Springer, vol. 90(9), pages 1315-1343, November.
    5. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    6. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    7. Wichmann, Matthias Gerhard & Johannes, Christoph & Spengler, Thomas Stefan, 2019. "Energy-oriented Lot-Sizing and Scheduling considering energy storages," International Journal of Production Economics, Elsevier, vol. 216(C), pages 204-214.
    8. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    9. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    10. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    11. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.
    12. Gila E. Fruchter & Hussein Naseraldin, 2021. "Coordinating Carbon Emissions via Production Quantities: A Differential Game Approach," Games, MDPI, vol. 12(1), pages 1-16, February.
    13. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    14. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    15. Mirko Grljušić & Vladimir Medica & Nikola Račić, 2014. "Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production," Energies, MDPI, vol. 7(11), pages 1-27, November.
    16. Ivan Ferretti & Matteo Camparada & Lucio Enrico Zavanella, 2022. "Queuing Theory-Based Design Methods for the Definition of Power Requirements in Manufacturing Systems," Energies, MDPI, vol. 15(20), pages 1-14, October.
    17. Kim, Kyeongsu & Lee, Ung & Kim, Changsoo & Han, Chonghun, 2015. "Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid," Energy, Elsevier, vol. 88(C), pages 304-313.
    18. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    19. Abbas Hamze & Yassine Ouazene & Nazir Chebbo & Imane Maatouk, 2019. "Multisources of Energy Contracting Strategy with an Ecofriendly Factor and Demand Uncertainties," Energies, MDPI, vol. 12(20), pages 1-24, October.
    20. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.

    More about this item

    Keywords

    Energy efficiency; Sustainable manufacturing system; Energy usage; Production planning; Waste heat recovery; Electrical energy storage system;
    All these keywords.

    JEL classification:

    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • L6 - Industrial Organization - - Industry Studies: Manufacturing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:87:y:2017:i:1:d:10.1007_s11573-016-0804-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.