IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v36y2024i3d10.1007_s10696-023-09514-w.html
   My bibliography  Save this article

Multi-resource constrained scheduling considering process plan flexibility and lot streaming for the CNC machining industry

Author

Listed:
  • James C. Chen

    (National Tsing Hua University)

  • Tzu-Li Chen

    (National Taiwan University of Science and Technology)

  • Yin-Yann Chen

    (National Formosa University)

  • Min-Yu Chung

    (National Tsing Hua University)

Abstract

The CNC machining scheduling problem is a classic flexible job shop scheduling problem (FJSSP) that has been proven to be NP-hard. Although there has been extensive research on FJSSP, its applications in real-world CNC machining scheduling problems have received limited attention, with few related papers. In reality, several critical characteristics within the CNC machining industry can significantly impact the scheduling problem, such as process plan flexibility, multiple resource constraints, and lot streaming. This study aims to establish a scheduling system for the CNC machining industry that integrates order information, work in process information, and the aforementioned characteristics, using a hybrid multi-objective genetic algorithm (HMOGA) combined with local search. The optimal parameter combination for HMOGA is determined through a design of experiments, while the effectiveness of local search is evaluated using computational analysis. Finally, real data from a company is used to validate the proposed method. The results demonstrate that the scheduling system developed in this study effectively addresses real-world CNC machining scheduling problems.

Suggested Citation

  • James C. Chen & Tzu-Li Chen & Yin-Yann Chen & Min-Yu Chung, 2024. "Multi-resource constrained scheduling considering process plan flexibility and lot streaming for the CNC machining industry," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 946-993, September.
  • Handle: RePEc:spr:flsman:v:36:y:2024:i:3:d:10.1007_s10696-023-09514-w
    DOI: 10.1007/s10696-023-09514-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-023-09514-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-023-09514-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deyun Wang & Olivier Grunder & Abdellah EL Moudni, 2014. "Using genetic algorithm for lot sizing and scheduling problem with arbitrary job volumes and distinct job due date considerations," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(8), pages 1694-1707, August.
    2. Gökçe Candan & Harun Resit Yazgan, 2015. "Genetic algorithm parameter optimisation using Taguchi method for a flexible manufacturing system scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 53(3), pages 897-915, February.
    3. Sarker, Ruhul & Liang, Ko-Hsin & Newton, Charles, 2002. "A new multiobjective evolutionary algorithm," European Journal of Operational Research, Elsevier, vol. 140(1), pages 12-23, July.
    4. Abedinnia, Hamid & Glock, C. H. & Schneider, Michael, 2017. "Machine scheduling in production: a content analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 87242, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    5. Lei, Deming & Guo, Xiuping, 2015. "An effective neighborhood search for scheduling in dual-resource constrained interval job shop with environmental objective," International Journal of Production Economics, Elsevier, vol. 159(C), pages 296-303.
    6. Das, Sidhartha R. & Canel, Cem, 2005. "An algorithm for scheduling batches of parts in a multi-cell flexible manufacturing system," International Journal of Production Economics, Elsevier, vol. 97(3), pages 247-262, September.
    7. Čapek, R. & Šůcha, P. & Hanzálek, Z., 2012. "Production scheduling with alternative process plans," European Journal of Operational Research, Elsevier, vol. 217(2), pages 300-311.
    8. Liu, Ying & Dong, Haibo & Lohse, Niels & Petrovic, Sanja, 2016. "A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance," International Journal of Production Economics, Elsevier, vol. 179(C), pages 259-272.
    9. Li Zhou & Zhuoning Chen & Shaoping Chen, 2018. "An effective detailed operation scheduling in MES based on hybrid genetic algorithm," Journal of Intelligent Manufacturing, Springer, vol. 29(1), pages 135-153, January.
    10. Xiao-long Zheng & Ling Wang, 2016. "A knowledge-guided fruit fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(18), pages 5554-5566, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R & M. Calle, 2020. "Scheduling a dual-resource flexible job shop with makespan and due date-related criteria," Annals of Operations Research, Springer, vol. 291(1), pages 5-35, August.
    2. Federica Costa & Matthias Thürer & Alberto Portioli-Staudacher, 2023. "Heterogeneous worker multi-functionality and efficiency in dual resource constrained manufacturing lines: an assessment by simulation," Operations Management Research, Springer, vol. 16(3), pages 1476-1489, September.
    3. Alejandro Vital-Soto & Mohammed Fazle Baki & Ahmed Azab, 2023. "A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 626-668, September.
    4. João M. R. C. Fernandes & Seyed Mahdi Homayouni & Dalila B. M. M. Fontes, 2022. "Energy-Efficient Scheduling in Job Shop Manufacturing Systems: A Literature Review," Sustainability, MDPI, vol. 14(10), pages 1-34, May.
    5. Servranckx, Tom & Vanhoucke, Mario, 2019. "Strategies for project scheduling with alternative subgraphs under uncertainty: similar and dissimilar sets of schedules," European Journal of Operational Research, Elsevier, vol. 279(1), pages 38-53.
    6. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    7. Jacinto Martín & Concha Bielza & David Ríos Insua, 2005. "Approximating nondominated sets in continuous multiobjective optimization problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 469-480, August.
    8. Wu, Chin-Chia & Lee, Wen-Chiung, 2006. "Two-machine flowshop scheduling to minimize mean flow time under linear deterioration," International Journal of Production Economics, Elsevier, vol. 103(2), pages 572-584, October.
    9. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    10. S. Maryam Masoumi & Nima Kazemi & Salwa Hanim Abdul-Rashid, 2019. "Sustainable Supply Chain Management in the Automotive Industry: A Process-Oriented Review," Sustainability, MDPI, vol. 11(14), pages 1-30, July.
    11. Burcu Yılmaz Kaya & Aylin Adem & Metin Dağdeviren, 2020. "A DSS-Based Novel Approach Proposition Employing Decision Techniques for System Design," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 413-445, March.
    12. Wichmann, Matthias Gerhard & Johannes, Christoph & Spengler, Thomas Stefan, 2019. "Energy-oriented Lot-Sizing and Scheduling considering energy storages," International Journal of Production Economics, Elsevier, vol. 216(C), pages 204-214.
    13. Quan, Gang & Greenwood, Garrison W. & Liu, Donglin & Hu, Sharon, 2007. "Searching for multiobjective preventive maintenance schedules: Combining preferences with evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1969-1984, March.
    14. Hongbo Li & Linwen Zheng & Hanyu Zhu, 2023. "Resource leveling in projects with flexible structures," Annals of Operations Research, Springer, vol. 321(1), pages 311-342, February.
    15. van der Beek, T. & Souravlias, D. & van Essen, J.T. & Pruyn, J. & Aardal, K., 2024. "Hybrid differential evolution algorithm for the resource constrained project scheduling problem with a flexible project structure and consumption and production of resources," European Journal of Operational Research, Elsevier, vol. 313(1), pages 92-111.
    16. Geurtsen, M. & Didden, Jeroen B.H.C. & Adan, J. & Atan, Z. & Adan, I., 2023. "Production, maintenance and resource scheduling: A review," European Journal of Operational Research, Elsevier, vol. 305(2), pages 501-529.
    17. Zhitao Xu & Adel Elomri & Roberto Baldacci & Laoucine Kerbache & Zhenyong Wu, 2024. "Frontiers and trends of supply chain optimization in the age of industry 4.0: an operations research perspective," Annals of Operations Research, Springer, vol. 338(2), pages 1359-1401, July.
    18. Galinina Anna & Burceva Olga & Parshutin Sergei, 2012. "The Optimization of COCOMO Model Coefficients Using Genetic Algorithms," Information Technology and Management Science, Sciendo, vol. 15(1), pages 45-51, December.
    19. Shoujing Zhang & Tiantian Hou & Qing Qu & Adam Glowacz & Samar M. Alqhtani & Muhammad Irfan & Grzegorz Królczyk & Zhixiong Li, 2022. "An Improved Mayfly Method to Solve Distributed Flexible Job Shop Scheduling Problem under Dual Resource Constraints," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    20. Seokgi Lee & Mona Issabakhsh & Hyun Woo Jeon & Seong Wook Hwang & Byung Chung, 2020. "Idle time and capacity control for a single machine scheduling problem with dynamic electricity pricing," Operations Management Research, Springer, vol. 13(3), pages 197-217, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:36:y:2024:i:3:d:10.1007_s10696-023-09514-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.