IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v135y2012i1p73-80.html
   My bibliography  Save this article

The storage location assignment problem for outbound containers in a maritime terminal

Author

Listed:
  • Chen, Lu
  • Lu, Zhiqiang

Abstract

This paper addresses the storage location assignment problem for outbound containers. The problem is decomposed into two stages. The yard bays and the amount of locations in each yard bay, which will be assigned to the containers bounded for different ships, are determined in the first stage. The exact storage location for each container is determined in the second stage. The problem in the first stage is solved by a mixed integer programming model, while a hybrid sequence stacking algorithm is applied to solve the problem in the second stage. Experimental results show that the proposed approach is effective and efficient in solving the storage location assignment problem for outbound containers.

Suggested Citation

  • Chen, Lu & Lu, Zhiqiang, 2012. "The storage location assignment problem for outbound containers in a maritime terminal," International Journal of Production Economics, Elsevier, vol. 135(1), pages 73-80.
  • Handle: RePEc:eee:proeco:v:135:y:2012:i:1:p:73-80
    DOI: 10.1016/j.ijpe.2010.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527310003579
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2010.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kap Hwan & Kim, Ki Young, 2007. "Optimal price schedules for storage of inbound containers," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 892-905, October.
    2. Zhang, Chuqian & Liu, Jiyin & Wan, Yat-wah & Murty, Katta G. & Linn, Richard J., 2003. "Storage space allocation in container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 37(10), pages 883-903, December.
    3. Kim, Kap Hwan & Park, Young Man & Ryu, Kwang-Ryul, 2000. "Deriving decision rules to locate export containers in container yards," European Journal of Operational Research, Elsevier, vol. 124(1), pages 89-101, July.
    4. Taleb-Ibrahimi, Mounira & de Castilho, Bernardo & Daganzo, Carlos F., 1993. "Storage space vs handling work in container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 27(1), pages 13-32, February.
    5. Hwan Kim, Kap & Bae Kim, Hong, 1999. "Segregating space allocation models for container inventories in port container terminals," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 415-423, March.
    6. Kim, Kap Hwan & Park, Kang Tae, 2003. "A note on a dynamic space-allocation method for outbound containers," European Journal of Operational Research, Elsevier, vol. 148(1), pages 92-101, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youn Ju Woo & Jang-Ho Song & Kap Hwan Kim, 2016. "Pricing storage of outbound containers in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 644-668, December.
    2. Qingcheng Zeng & Yuanjun Feng & Zigen Chen, 2017. "Optimizing berth allocation and storage space in direct transshipment operations at container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(3), pages 474-503, August.
    3. Li, Wenkai & Goh, Mark & Wu, Yong & Petering, M.E.H. & de Souza, R. & Wu, Y.C., 2012. "A continuous time model for multiple yard crane scheduling with last minute job arrivals," International Journal of Production Economics, Elsevier, vol. 136(2), pages 332-343.
    4. Oraya Nopparit, 2024. "Efficient Container Logistics System Model," GATR Journals jber248, Global Academy of Training and Research (GATR) Enterprise.
    5. Ya Xu & Kelei Xue & Yuquan Du, 2018. "Berth Scheduling Problem Considering Traffic Limitations in the Navigation Channel," Sustainability, MDPI, vol. 10(12), pages 1-22, December.
    6. Mehdi Mazloumi & Edwin van Hassel, 2021. "Improvement of Container Terminal Productivity with Knowledge about Future Transport Modes: A Theoretical Agent-Based Modelling Approach," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    7. Chen, Xiaojing & Li, Feng & Jia, Bin & Wu, Jianjun & Gao, Ziyou & Liu, Ronghui, 2021. "Optimizing storage location assignment in an automotive Ro-Ro terminal," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 249-281.
    8. Bouzekri, Hamza & Bara, Najat & Alpan, Gülgün & Giard, Vincent, 2022. "An integrated Decision Support System for planning production, storage and bulk port operations in a fertilizer supply chain," International Journal of Production Economics, Elsevier, vol. 252(C).
    9. Wang, Wenyuan & Liu, Huakun & Tian, Qi & Xia, Zicheng & Liu, Suri & Peng, Yun, 2024. "An enhanced variable neighborhood search method for refrigerated container stacking and relocation problem with duplicate priorities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    10. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    11. Hyun Ji Park & Sung Won Cho & Abhilasha Nanda & Jin Hyoung Park, 2023. "Data-driven dynamic stacking strategy for export containers in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 170-195, March.
    12. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    13. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
    14. Mar-Ortiz, Julio & Castillo-García, Norberto & Gracia, María D., 2020. "A decision support system for a capacity management problem at a container terminal," International Journal of Production Economics, Elsevier, vol. 222(C).
    15. M. Hakan Akyüz & Chung‐Yee Lee, 2014. "A mathematical formulation and efficient heuristics for the dynamic container relocation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(2), pages 101-118, March.
    16. Julian Neugebauer & Leonard Heilig & Stefan Voß, 2024. "Digital Twins in the Context of Seaports and Terminal Facilities," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 821-917, September.
    17. Zhang, Canrong & Wu, Tao & Kim, Kap Hwan & Miao, Lixin, 2014. "Conservative allocation models for outbound containers in container terminals," European Journal of Operational Research, Elsevier, vol. 238(1), pages 155-165.
    18. Huiling Zhu & Mingjun Ji & Wenwen Guo & Qingbin Wang & Yongzhi Yang, 2019. "Mathematical formulation and heuristic algorithm for the block relocation and loading problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(4), pages 333-351, June.
    19. Roberto Guerra-Olivares & Neale R. Smith & Rosa G. González-Ramírez & Leopoldo Eduardo Cárdenas-Barrón, 2018. "A study of the sensitivity of sequence stacking strategies for the storage location assignment problem for out-bound containers in a maritime terminal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1057-1062, October.
    20. Facchini, F. & Digiesi, S. & Mossa, G., 2020. "Optimal dry port configuration for container terminals: A non-linear model for sustainable decision making," International Journal of Production Economics, Elsevier, vol. 219(C), pages 164-178.
    21. Chenhao Zhou & Ek Peng Chew & Loo Hay Lee, 2018. "Information-Based Allocation Strategy for GRID-Based Transshipment Automated Container Terminal," Transportation Science, INFORMS, vol. 52(3), pages 707-721, June.
    22. Zhang, Canrong & Wang, Qi & Yuan, Guoping, 2023. "Novel models and algorithms for location assignment for outbound containers in container terminals," European Journal of Operational Research, Elsevier, vol. 308(2), pages 722-737.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youn Ju Woo & Jang-Ho Song & Kap Hwan Kim, 2016. "Pricing storage of outbound containers in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 644-668, December.
    2. Voß, Andre & Guckenbiehl, Gabriel & Schütt, Holger & Buer, Tobias, 2016. "A storage strategy with dynamic bay reservations for container terminals," Bremen Computational Logistics Group Working Papers 4, University of Bremen, Computational Logistics Junior Research Group.
    3. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    4. Yu, Mingzhu & Qi, Xiangtong, 2013. "Storage space allocation models for inbound containers in an automatic container terminal," European Journal of Operational Research, Elsevier, vol. 226(1), pages 32-45.
    5. Saurí, S. & Martín, E., 2011. "Space allocating strategies for improving import yard performance at marine terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1038-1057.
    6. Jiang, Xinjia & Lee, Loo Hay & Chew, Ek Peng & Han, Yongbin & Tan, Kok Choon, 2012. "A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port," European Journal of Operational Research, Elsevier, vol. 221(1), pages 64-73.
    7. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
    8. Briskorn, Dirk & Drexl, Andreas & Hartmann, Sönke, 2005. "Inventory based dispatching of automated guided vehicles on container terminals," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 596, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. Kim, Kap Hwan & Park, Kang Tae, 2003. "A note on a dynamic space-allocation method for outbound containers," European Journal of Operational Research, Elsevier, vol. 148(1), pages 92-101, July.
    10. Zhang, Canrong & Wu, Tao & Kim, Kap Hwan & Miao, Lixin, 2014. "Conservative allocation models for outbound containers in container terminals," European Journal of Operational Research, Elsevier, vol. 238(1), pages 155-165.
    11. Jonas Ahmt & Jonas Skott Sigtenbjerggaard & Richard Martin Lusby & Jesper Larsen & David Ryan, 2016. "A new approach to the Container Positioning Problem," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 617-643, December.
    12. Yat‐wah Wan & Jiyin Liu & Pei‐Chun Tsai, 2009. "The assignment of storage locations to containers for a container stack," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(8), pages 699-713, December.
    13. Lee, Yusin & Chao, Shih-Liang, 2009. "A neighborhood search heuristic for pre-marshalling export containers," European Journal of Operational Research, Elsevier, vol. 196(2), pages 468-475, July.
    14. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    15. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    16. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    17. Park, Taejin & Choe, Ri & Hun Kim, Young & Ryel Ryu, Kwang, 2011. "Dynamic adjustment of container stacking policy in an automated container terminal," International Journal of Production Economics, Elsevier, vol. 133(1), pages 385-392, September.
    18. Zhen, Lu & Xu, Zhou & Wang, Kai & Ding, Yi, 2016. "Multi-period yard template planning in container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 700-719.
    19. Woo, Youn Ju & Kim, Kap Hwan, 2011. "Estimating the space requirement for outbound container inventories in port container terminals," International Journal of Production Economics, Elsevier, vol. 133(1), pages 293-301, September.
    20. Feng, Xuehao & He, Yucheng & Kim, Kap-Hwan, 2022. "Space planning considering congestion in container terminal yards," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 52-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:135:y:2012:i:1:p:73-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.