IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v28y2016i4d10.1007_s10696-015-9228-0.html
   My bibliography  Save this article

A new approach to the Container Positioning Problem

Author

Listed:
  • Jonas Ahmt

    (Maersk Line)

  • Jonas Skott Sigtenbjerggaard

    (Accenture)

  • Richard Martin Lusby

    (Technical University of Denmark)

  • Jesper Larsen

    (Technical University of Denmark)

  • David Ryan

    (University of Auckland)

Abstract

In this paper the Container Positioning Problem is revisited. This problem arises at busy container terminals and requires one to minimize the use of block cranes in handling the containers that must wait at the terminal until their next means of transportation. We propose a new Mixed Integer Programming model that not only improves on earlier attempts at this problem, but also better reflects reality. In particular, the proposed model adopts a preference to reshuffle containers in line with a just-in-time concept, as it is assumed that data is more accurate the closer to a container’s scheduled departure the time is. Other important improvements include a reduction in the model size, and the ability of the model to consider containers initially at the terminal. In addition, we describe several classes of valid inequalities for this new formulation and present a rolling horizon based heuristic for solving larger instances of the problem. We show that this new formulation drastically outperforms previous attempts at the problem through a direct comparison on instances available in the literature. Furthermore, we also show that the rolling horizon based heuristic can further reduce the solution time on the larger of these instances as well as find acceptable solutions to much bigger, artificially generated, instances.

Suggested Citation

  • Jonas Ahmt & Jonas Skott Sigtenbjerggaard & Richard Martin Lusby & Jesper Larsen & David Ryan, 2016. "A new approach to the Container Positioning Problem," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 617-643, December.
  • Handle: RePEc:spr:flsman:v:28:y:2016:i:4:d:10.1007_s10696-015-9228-0
    DOI: 10.1007/s10696-015-9228-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-015-9228-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-015-9228-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kap Hwan & Park, Young Man & Ryu, Kwang-Ryul, 2000. "Deriving decision rules to locate export containers in container yards," European Journal of Operational Research, Elsevier, vol. 124(1), pages 89-101, July.
    2. Yu, Mingzhu & Qi, Xiangtong, 2013. "Storage space allocation models for inbound containers in an automatic container terminal," European Journal of Operational Research, Elsevier, vol. 226(1), pages 32-45.
    3. Taleb-Ibrahimi, Mounira & de Castilho, Bernardo & Daganzo, Carlos F., 1993. "Storage space vs handling work in container terminals," Transportation Research Part B: Methodological, Elsevier, vol. 27(1), pages 13-32, February.
    4. Bish, Ebru K., 2003. "A multiple-crane-constrained scheduling problem in a container terminal," European Journal of Operational Research, Elsevier, vol. 144(1), pages 83-107, January.
    5. Delgado, Alberto & Jensen, Rune Møller & Janstrup, Kira & Rose, Trine Høyer & Andersen, Kent Høj, 2012. "A Constraint Programming model for fast optimal stowage of container vessel bays," European Journal of Operational Research, Elsevier, vol. 220(1), pages 251-261.
    6. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
    7. Ebru K. Bish & Thin‐Yin Leong & Chung‐Lun Li & Jonathan W. C. Ng & David Simchi‐Levi, 2001. "Analysis of a new vehicle scheduling and location problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(5), pages 363-385, August.
    8. Lee, Yusin & Chao, Shih-Liang, 2009. "A neighborhood search heuristic for pre-marshalling export containers," European Journal of Operational Research, Elsevier, vol. 196(2), pages 468-475, July.
    9. Cordeau, Jean-Francois & Gaudioso, Manlio & Laporte, Gilbert & Moccia, Luigi, 2007. "The service allocation problem at the Gioia Tauro Maritime Terminal," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1167-1184, January.
    10. Kim, Kap Hwan & Park, Kang Tae, 2003. "A note on a dynamic space-allocation method for outbound containers," European Journal of Operational Research, Elsevier, vol. 148(1), pages 92-101, July.
    11. Wu, Yue & Luo, Jiabin & Zhang, Dali & Dong, Ming, 2013. "An integrated programming model for storage management and vehicle scheduling at container terminals," Research in Transportation Economics, Elsevier, vol. 42(1), pages 13-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
    2. Facchini, F. & Digiesi, S. & Mossa, G., 2020. "Optimal dry port configuration for container terminals: A non-linear model for sustainable decision making," International Journal of Production Economics, Elsevier, vol. 219(C), pages 164-178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.
    3. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    4. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
    5. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
    6. Chen, Lu & Lu, Zhiqiang, 2012. "The storage location assignment problem for outbound containers in a maritime terminal," International Journal of Production Economics, Elsevier, vol. 135(1), pages 73-80.
    7. Youn Ju Woo & Jang-Ho Song & Kap Hwan Kim, 2016. "Pricing storage of outbound containers in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 644-668, December.
    8. Zhang, Canrong & Wu, Tao & Kim, Kap Hwan & Miao, Lixin, 2014. "Conservative allocation models for outbound containers in container terminals," European Journal of Operational Research, Elsevier, vol. 238(1), pages 155-165.
    9. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    10. Jiang, Xin Jia & Jin, Jian Gang, 2017. "A branch-and-price method for integrated yard crane deployment and container allocation in transshipment yards," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 62-75.
    11. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    12. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    13. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    14. T. Jonker & M. B. Duinkerken & N. Yorke-Smith & A. Waal & R. R. Negenborn, 2021. "Coordinated optimization of equipment operations in a container terminal," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 281-311, June.
    15. Park, Taejin & Choe, Ri & Hun Kim, Young & Ryel Ryu, Kwang, 2011. "Dynamic adjustment of container stacking policy in an automated container terminal," International Journal of Production Economics, Elsevier, vol. 133(1), pages 385-392, September.
    16. Yu, Mingzhu & Qi, Xiangtong, 2013. "Storage space allocation models for inbound containers in an automatic container terminal," European Journal of Operational Research, Elsevier, vol. 226(1), pages 32-45.
    17. Woo, Youn Ju & Kim, Kap Hwan, 2011. "Estimating the space requirement for outbound container inventories in port container terminals," International Journal of Production Economics, Elsevier, vol. 133(1), pages 293-301, September.
    18. Anne Ehleiter & Florian Jaehn, 2018. "Scheduling crossover cranes at container terminals during seaside peak times," Journal of Heuristics, Springer, vol. 24(6), pages 899-932, December.
    19. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
    20. Feng, Xuehao & He, Yucheng & Kim, Kap-Hwan, 2022. "Space planning considering congestion in container terminal yards," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 52-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:28:y:2016:i:4:d:10.1007_s10696-015-9228-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.