IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v609y2023ics0378437122009190.html
   My bibliography  Save this article

A dynamic lane-changing decision and trajectory planning model of autonomous vehicles under mixed autonomous vehicle and human-driven vehicle environment

Author

Listed:
  • Yu, Yuewen
  • Luo, Xia
  • Su, Qiming
  • Peng, Weikang

Abstract

How to complete a lane changing process considering various variables has always been a critical issue in the field of autonomous driving. Developing a lane-changing decision model with full consideration of the surrounding vehicles and related decision-based trajectory planning model that comprehensively weighs safety and efficiency are conducive to the driving of autonomous vehicles (AVs) under mixed autonomous vehicle and human-driven vehicle (AV–HV) environment. Under the mixed AV–HV environment, we optimize a multi-player dynamic game model considering the status of surrounding vehicles to ensure the accurate execution of lane-changing decision of AVs. Lane changing trajectory of AV is planned based on polynomial curves, which can be dynamically updated according to the real-time status of vehicles and game results. Then, a computational experiment basing on the lane changing vehicles data from NGSIM (Next Generation Simulation) is performed with proposed models. The simulation results show that the lane-changing decision and trajectory planning model developed in our research have good adaptability to lane changing process in different scenarios, which can effectively measure the driving intention of surrounding vehicles and dynamically plan a smooth trajectory line considering safety and efficiency.

Suggested Citation

  • Yu, Yuewen & Luo, Xia & Su, Qiming & Peng, Weikang, 2023. "A dynamic lane-changing decision and trajectory planning model of autonomous vehicles under mixed autonomous vehicle and human-driven vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
  • Handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122009190
    DOI: 10.1016/j.physa.2022.128361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122009190
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nakata, Makoto & Yamauchi, Atsuo & Tanimoto, Jun & Hagishima, Aya, 2010. "Dilemma game structure hidden in traffic flow at a bottleneck due to a 2 into 1 lane junction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5353-5361.
    2. Zheng Peng & Wenxing Zhu, 2013. "An Alternating Direction Method for Nash Equilibrium of Two-Person Games with Alternating Offers," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 533-551, May.
    3. Coifman, Benjamin & Li, Lizhe, 2017. "A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory dataset," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 362-377.
    4. Ang Ji & David Levinson, 2021. "Estimating the Social Gap with a Game Theory Model of Lane Changing," Working Papers 2021-02, University of Minnesota: Nexus Research Group.
    5. Jin, Sheng & Wang, Dianhai & Tao, Pengfei & Li, Pingfan, 2010. "Non-lane-based full velocity difference car following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4654-4662.
    6. Lawrence D. Burns, 2013. "A vision of our transport future," Nature, Nature, vol. 497(7448), pages 181-182, May.
    7. Gipps, P. G., 1986. "A model for the structure of lane-changing decisions," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 403-414, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Renteng & Abdel-Aty, Mohamed & Gu, Xin & Zheng, Ou & Xiang, Qiaojun, 2023. "A unified modeling framework for lane change intention recognition and vehicle status prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Cai, Yunhao & Jing, Peng & Wang, Baihui & Jiang, Chengxi & Wang, Yuan, 2023. "How does “over-hype” lead to public misconceptions about autonomous vehicles? A new insight applying causal inference," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    3. Wang, Zhangu & Guan, Changming & Zhao, Ziliang & Zhao, Jun & Qi, Chen & Hui, Zilaing, 2024. "Expressway lane change strategy of autonomous driving based on prior knowledge and data-driven," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhaohan & Ramezani, Mohsen & Levinson, David, 2024. "How mandatory are ‘Mandatory’ lane changes? An analytical and experimental study on the costs of missing freeway exits," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    2. Weihan Chen & Gang Ren & Qi Cao & Jianhua Song & Yikun Liu & Changyin Dong, 2023. "A Game-Theory-Based Approach to Modeling Lane-Changing Interactions on Highway On-Ramps: Considering the Bounded Rationality of Drivers," Mathematics, MDPI, vol. 11(2), pages 1-16, January.
    3. Li, Gen & Zhao, Le & Tang, Wenyun & Wu, Lan & Ren, Jiaolong, 2023. "Modeling and analysis of mandatory lane-changing behavior considering heterogeneity in means and variances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    4. Kou, Yukang & Ma, Changxi, 2023. "Dual-objective intelligent vehicle lane changing trajectory planning based on polynomial optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    5. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    6. Bonsall, Peter & Liu, Ronghui & Young, William, 2005. "Modelling safety-related driving behaviour--impact of parameter values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 425-444, June.
    7. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    8. Tanimoto, Jun & Nakamura, Kousuke, 2016. "Social dilemma structure hidden behind traffic flow with route selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 92-99.
    9. Hiroshi Tatsumi & Masaya Kawano & Tetsunobu Yoshitake & Satoshi Toi & Yoshitaka Kajita, 2004. "Evaluation of City Planning Road Development Measures by Microscopic Traffic Simulation," ERSA conference papers ersa04p221, European Regional Science Association.
    10. Chun Yang & Jui-Che Tu & Qianling Jiang, 2020. "The Influential Factors of Consumers’ Sustainable Consumption: A Case on Electric Vehicles in China," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    11. Mingmin Guo & Zheng Wu & Huibing Zhu, 2018. "Empirical study of lane-changing behavior on three Chinese freeways," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.
    12. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    13. Yao, Handong & Li, Qianwen & Li, Xiaopeng, 2020. "A study of relationships in traffic oscillation features based on field experiments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 339-355.
    14. Simão, Ricardo & Wardil, Lucas, 2021. "Social dilemma in traffic with heterogeneous drivers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    15. Wu, Wei & Zhang, Fangni & Liu, Wei & Lodewijks, Gabriel, 2020. "Modelling the traffic in a mixed network with autonomous-driving expressways and non-autonomous local streets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    16. Li, Yongfu & Zhao, Hang & Zhang, Li & Zhang, Chao, 2018. "An extended car-following model incorporating the effects of lateral gap and gradient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 177-189.
    17. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    18. Shuping Wu & Zan Yang, 2020. "Availability of Public Electric Vehicle Charging Pile and Development of Electric Vehicle: Evidence from China," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    19. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.
    20. Zhou, Fan & Zheng, Zuduo & Whitehead, Jake & Washington, Simon & Perrons, Robert K. & Page, Lionel, 2020. "Preference heterogeneity in mode choice for car-sharing and shared automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 633-650.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122009190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.