IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v632y2023ip1s0378437123008877.html
   My bibliography  Save this article

A unified modeling framework for lane change intention recognition and vehicle status prediction

Author

Listed:
  • Yuan, Renteng
  • Abdel-Aty, Mohamed
  • Gu, Xin
  • Zheng, Ou
  • Xiang, Qiaojun

Abstract

Accurately detecting and predicting Lane Change (LC) processes of human-driven vehicles can help autonomous vehicles better understand their surrounding environment, recognize potential safety hazards, and improve traffic safety. This paper focuses on LC processes, first developing a Temporal Convolutional Network (TCN) with an attention mechanism (ATM) model to recognize LC intention. Then, considering the intrinsic relationship among output variables, the Multi-Task Learning (MTL) framework is employed to simultaneously predict multiple LC vehicle status indicators. Furthermore, a unified modeling framework for LC intention recognition and driving status prediction (LC-IR-SP) is developed. The results indicate that the classification accuracy of LC intention was improved from 95.83% to 98.20% when incorporating the ATM into the TCN model. For LC vehicle status prediction issues, Pearson's correlation coefficient indicates that metrics extracted from LC processes show stronger correlation than those extracted from Lane-keeping processes. Consequently, three multi-tasking learning models are constructed based on the MTL framework. The results indicate that the MTL with Long Short-Term Memory (MTL-LSTM) model outperforms the MTL with TCN (MTL-TCN) and MTL with TCN-ATM (MTL-TCN-ATM) models. Compared to the corresponding single-task model, the MTL-LSTM model demonstrates an average decrease of 26.04% in MAE and 25.19% in RMSE. The LC-IR-SP model developed holds great potential in enhancing autonomous vehicles' perception and prediction capabilities, such as identifying LC behaviors, calculating real-time traffic conflict indices, and improving vehicle control strategies.

Suggested Citation

  • Yuan, Renteng & Abdel-Aty, Mohamed & Gu, Xin & Zheng, Ou & Xiang, Qiaojun, 2023. "A unified modeling framework for lane change intention recognition and vehicle status prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
  • Handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008877
    DOI: 10.1016/j.physa.2023.129332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123008877
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Yuewen & Luo, Xia & Su, Qiming & Peng, Weikang, 2023. "A dynamic lane-changing decision and trajectory planning model of autonomous vehicles under mixed autonomous vehicle and human-driven vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Guo, Yingshi & Zhang, Hongjia & Wang, Chang & Sun, Qinyu & Li, Wanmin, 2021. "Driver lane change intention recognition in the connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    3. Khelfa, Basma & Ba, Ibrahima & Tordeux, Antoine, 2023. "Predicting highway lane-changing maneuvers: A benchmark analysis of machine and ensemble learning algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    4. Coifman, Benjamin & Li, Lizhe, 2017. "A critical evaluation of the Next Generation Simulation (NGSIM) vehicle trajectory dataset," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 362-377.
    5. Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
    6. Li, Dan & Jiang, Fuxin & Chen, Min & Qian, Tao, 2022. "Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks," Energy, Elsevier, vol. 238(PC).
    7. Sheu, Jiuh-Biing & Ritchie, Stephen G., 2001. "Stochastic modeling and real-time prediction of vehicular lane-changing behavior," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 695-716, August.
    8. Xu, Ting & Zhang, Zhishun & Wu, Xingqi & Qi, Long & Han, Yi, 2021. "Recognition of lane-changing behaviour with machine learning methods at freeway off-ramps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Gen & Zhao, Le & Tang, Wenyun & Wu, Lan & Ren, Jiaolong, 2023. "Modeling and analysis of mandatory lane-changing behavior considering heterogeneity in means and variances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    2. Sheu, Jiuh-Biing & Yang, Hai, 2008. "An integrated toll and ramp control methodology for dynamic freeway congestion management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4327-4348.
    3. Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
    4. Sheu, Jiuh-Biing, 2006. "A composite traffic flow modeling approach for incident-responsive network traffic assignment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 461-478.
    5. Li, Qingyang & Wang, Guosong & Wu, Xinrong & Gao, Zhigang & Dan, Bo, 2024. "Arctic short-term wind speed forecasting based on CNN-LSTM model with CEEMDAN," Energy, Elsevier, vol. 299(C).
    6. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
    7. Jiuh-Biing Sheu, 2003. "A Stochastic Modeling Approach to Real-Time Prediction of Queue Overflows," Transportation Science, INFORMS, vol. 37(1), pages 97-119, February.
    8. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    9. Zeyu Zhang & Xiaoqian Liu & Xiling Zhang & Zhishan Yang & Jian Yao, 2024. "Carbon Price Forecasting Using Optimized Sliding Window Empirical Wavelet Transform and Gated Recurrent Unit Network to Mitigate Data Leakage," Energies, MDPI, vol. 17(17), pages 1-22, August.
    10. Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
    11. Khasanzoda, Nasrullo & Zicmane, Inga & Beryozkina, Svetlana & Safaraliev, Murodbek & Sultonov, Sherkhon & Kirgizov, Alifbek, 2022. "Regression model for predicting the speed of wind flows for energy needs based on fuzzy logic," Renewable Energy, Elsevier, vol. 191(C), pages 723-731.
    12. Ahmed H. A. Elkasem & Mohamed Khamies & Gaber Magdy & Ibrahim B. M. Taha & Salah Kamel, 2021. "Frequency Stability of AC/DC Interconnected Power Systems with Wind Energy Using Arithmetic Optimization Algorithm-Based Fuzzy-PID Controller," Sustainability, MDPI, vol. 13(21), pages 1-29, November.
    13. Wang, Zhangu & Guan, Changming & Zhao, Ziliang & Zhao, Jun & Qi, Chen & Hui, Zilaing, 2024. "Expressway lane change strategy of autonomous driving based on prior knowledge and data-driven," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    14. Jianrong Cai & Zhixue Li & Yinghong Xiao & Zhaoming Zhou & Qiong Long & Jie Yu & Jinfan Zhang & Lei Zhang, 2023. "Reversible Lane Optimization of the Urban Road Network Considering Adjustment Time Constraints," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
    15. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    16. Yongfeng Ma & Zhuopeng Xie & Shuyan Chen & Ying Wu & Fengxiang Qiao, 2021. "Real-Time Driving Behavior Identification Based on Multi-Source Data Fusion," IJERPH, MDPI, vol. 19(1), pages 1-14, December.
    17. Zhang, Chu & Ma, Huixin & Hua, Lei & Sun, Wei & Nazir, Muhammad Shahzad & Peng, Tian, 2022. "An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction," Energy, Elsevier, vol. 254(PA).
    18. Banteng Liu & Yangqing Xie & Ke Wang & Lizhe Yu & Ying Zhou & Xiaowen Lv, 2023. "Short-Term Multi-Step Wind Direction Prediction Based on OVMD Quadratic Decomposition and LSTM," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    19. Dhari Ali Mahmood & Gábor Horváth, 2020. "Analysis of the Message Propagation Speed in VANET with Disconnected RSUs," Mathematics, MDPI, vol. 8(5), pages 1-21, May.
    20. Bi, Yubo & Wu, Qiulan & Wang, Shilu & Shi, Jihao & Cong, Haiyong & Ye, Lili & Gao, Wei & Bi, Mingshu, 2023. "Hydrogen leakage location prediction at hydrogen refueling stations based on deep learning," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.