IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v558y2020ics037843712030488x.html
   My bibliography  Save this article

Study on state feedback control strategy for car-following system

Author

Listed:
  • Song, Tao
  • Zhu, Wen-Xing

Abstract

A state feedback control strategy of modern control theory is proposed to analyze the classical car-following system. From the point of view of control theory, the influence of changing two important states velocity and headway on the stability of the car-following system is analyzed. The stability conditions of the control parameters are obtained by the conditions for roots of characteristic polynomials and the small gain theorem in the control theory. A dynamical car-following model is derived by the state feedback control method. Simulation experiments are conducted to verify the state feedback control strategy on traffic flow stability by the new model under the conditions of open boundary and periodic boundary respectively. The simulation results show that with the increase of the influence coefficient, the stability of the traffic flow system is enhanced, and the simulation results are consistent with the theoretical analysis results.

Suggested Citation

  • Song, Tao & Zhu, Wen-Xing, 2020. "Study on state feedback control strategy for car-following system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
  • Handle: RePEc:eee:phsmap:v:558:y:2020:i:c:s037843712030488x
    DOI: 10.1016/j.physa.2020.124938
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712030488X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124938?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Wen-Xing & Zhang, Li-Dong, 2014. "A speed feedback control strategy for car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 343-351.
    2. Tang, Tie-Qiao & He, Jia & Yang, Shi-Chun & Shang, Hua-Yan, 2014. "A car-following model accounting for the driver’s attribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 583-591.
    3. Peng, Guanghan & Kuang, Hua & Qing, Li, 2018. "Feedback control method in lattice hydrodynamic model under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 651-656.
    4. Tang, Tie-Qiao & Zhang, Jian & Liu, Kai, 2017. "A speed guidance model accounting for the driver’s bounded rationality at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 45-52.
    5. Ge, Hong-xia & Meng, Xiang-pei & Zhu, Hui-bing & Li, Zhi-Peng, 2014. "Feedback control for car following model based on two-lane traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 28-39.
    6. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    7. Zhang, Li-Dong & Zhu, Wen-Xing & Liu, Jian-lei, 2014. "Proportional–differential effects in traffic car-following model system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 89-99.
    8. Shiro Sawada, 2002. "Generalized Optimal Velocity Model For Traffic Flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 1-12.
    9. Peng, Guanghan & Kuang, Hua & Qing, Li, 2018. "A new lattice model of traffic flow considering driver’s anticipation effect of the traffic interruption probability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 374-380.
    10. Liao, Peng & Tang, Tie-Qiao & Wang, Tao & Zhang, Jian, 2019. "A car-following model accounting for the driving habits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 108-118.
    11. Zhu, Wen-Xing & Zhang, Li-Dong, 2016. "Analysis of car-following model with cascade compensation strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 265-274.
    12. Nagatani, Takashi, 2009. "Traffic states and fundamental diagram in cellular automaton model of vehicular traffic controlled by signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1673-1681.
    13. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of feedback control scheme on discrete car-following system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 322-330.
    14. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    15. Peng, Guanghan & Bai, Kezhao & Kuang, Hua, 2019. "Feedback control caused by honk effect incorporating the driver’s characteristics in lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    16. Peng, Guanghan & Kuang, Hua & Zhao, Hongzhuan & Qing, Li, 2019. "Nonlinear analysis of a new lattice hydrodynamic model with the consideration of honk effect on flux for two-lane highway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 93-101.
    17. Peng, Guanghan & Kuang, Hua & Bai, Kezhao, 2019. "The impact of the individual difference on traffic flow under honk environment in lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shu-Tong & Zhu, Wen-Xing & Ma, Xiao-Long, 2023. "Mixed traffic system with multiple vehicle types and autonomous vehicle platoon: Modeling, stability analysis and control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Song, Tao & Zhu, Wen-Xing, 2022. "Analysis of feed-forward control effect on autonomous driving car-following system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chuan-Yao & Sun, Qi-Jia, 2019. "Influence of coarse toll on the dynamic properties of traffic flow in a single-entry traffic corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Song, Tao & Zhu, Wen-Xing, 2022. "Analysis of feed-forward control effect on autonomous driving car-following system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    3. Chen, Can & Ge, Hongxia & Cheng, Rongjun, 2019. "Self-stabilizing analysis of an extended car-following model with consideration of expected effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2020. "An extended macro model accounting for the driver’s timid and aggressive attributions and bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Li, Shihao & Cheng, Rongjun & Ge, Hongxia, 2020. "An improved car-following model considering electronic throttle dynamics and delayed velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    6. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "Analysis of the historical time integral form of relative flux and feedback control in an extended lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 326-334.
    7. Kaur, Daljeet & Sharma, Sapna, 2020. "A new two-lane lattice model by considering predictive effect in traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    8. Li, Lixiang & Cheng, Rongjun & Ge, Hongxia, 2021. "New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver’s memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    9. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "A car-following model considering the effect of electronic throttle opening angle over the curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    10. Sun, Fengxin & Wang, Jufeng & Cheng, Rongjun, 2019. "An improved anisotropic continuum model considering the driver’s desire for steady driving," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1449-1462.
    11. Huimin Liu & Yuhong Wang, 2021. "Impact of Strong Wind and Optimal Estimation of Flux Difference Integral in a Lattice Hydrodynamic Model," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    12. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    13. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    14. Yan, Chunyue & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model by considering the optimal velocity difference and electronic throttle angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    15. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended car-following model considering the self-stabilizing driving behavior of headway," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 347-357.
    16. Jiang, Nan & Yu, Bin & Cao, Feng & Dang, Pengfei & Cui, Shaohua, 2021. "An extended visual angle car-following model considering the vehicle types in the adjacent lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    17. Qi, Weiwei & Ma, Siwei & Fu, Chuanyun, 2023. "An improved car-following model considering the influence of multiple preceding vehicles in the same and two adjacent lanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    18. Yang, Qiaoli & Shi, Zhongke, 2018. "The evolution process of queues at signalized intersections under batch arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 413-425.
    19. Li, Chuan-Yao & Huang, Hai-Jun & Tang, Tie-Qiao, 2017. "Analysis of social optimum for staggered shifts in a single-entry traffic corridor with no late arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 275-283.
    20. Jiao, Yulei & Ge, Hongxia & Cheng, Rongjun, 2019. "Nonlinear analysis for a modified continuum model considering electronic throttle (ET) and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:558:y:2020:i:c:s037843712030488x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.