IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v598y2022ics037843712200303x.html
   My bibliography  Save this article

Analysis of feed-forward control effect on autonomous driving car-following system

Author

Listed:
  • Song, Tao
  • Zhu, Wen-Xing

Abstract

In this paper, the feed-forward control effect is introduced into the car-following system, which combines the proportional differentiation and velocity feedback effect to form a new compound compensation method to improve the stability and rapidity of the traffic flow system. The unit step input response in time domain analysis method is used to analyze the system and the feed-forward effect of the system. Using the small gain theorem and the Rouse criterion, we obtain the stability conditions of the improved system and obtain the neutral stability curves. Next, setting up simulation experiments discuss the influence of feed-forward effect on autonomous traffic flow system. The results show that the introduction of feed-forward effect can effectively improve the rapidity of traffic flow system responding to disturbances. Combined with appropriate proportional differentiation and velocity feedback, the system can be both stability and rapidity, which is meaningful for autonomous driving.

Suggested Citation

  • Song, Tao & Zhu, Wen-Xing, 2022. "Analysis of feed-forward control effect on autonomous driving car-following system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
  • Handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s037843712200303x
    DOI: 10.1016/j.physa.2022.127401
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712200303X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127401?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 274-285.
    2. Song, Tao & Zhu, Wen-Xing, 2020. "Study on state feedback control strategy for car-following system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    3. Zhao, Xiaomei & Gao, Ziyou, 2006. "A control method for congested traffic induced by bottlenecks in the coupled map car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 513-522.
    4. Peng, Guanghan & Yang, Shuhong & Xia, Dongxue & Li, Xiaoqin, 2019. "Delayed-feedback control in a car-following model with the combination of V2V communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    5. Zhang, Li-Dong & Zhu, Wen-Xing & Liu, Jian-lei, 2014. "Proportional–differential effects in traffic car-following model system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 89-99.
    6. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of feedback control scheme on discrete car-following system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 322-330.
    7. Wu, Xia & Zhao, Xiangmo & Song, Huansheng & Xin, Qi & Yu, Shaowei, 2019. "Effects of the prevision relative velocity on traffic dynamics in the ACC strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 192-198.
    8. Zhu, Wen-Xing & Zhang, Li-Dong, 2014. "A speed feedback control strategy for car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 343-351.
    9. Tang, Tie-Qiao & He, Jia & Yang, Shi-Chun & Shang, Hua-Yan, 2014. "A car-following model accounting for the driver’s attribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 583-591.
    10. Ge, Hong-xia & Meng, Xiang-pei & Zhu, Hui-bing & Li, Zhi-Peng, 2014. "Feedback control for car following model based on two-lane traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 28-39.
    11. Zhu, Wen-Xing & Zhang, Li-Dong, 2016. "Analysis of car-following model with cascade compensation strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 265-274.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    2. Wang, Shu-Tong & Zhu, Wen-Xing & Ma, Xiao-Long, 2023. "Mixed traffic system with multiple vehicle types and autonomous vehicle platoon: Modeling, stability analysis and control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Tao & Zhu, Wen-Xing, 2020. "Study on state feedback control strategy for car-following system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    2. Li, Shihao & Cheng, Rongjun & Ge, Hongxia, 2020. "An improved car-following model considering electronic throttle dynamics and delayed velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    3. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    4. Li, Lixiang & Cheng, Rongjun & Ge, Hongxia, 2021. "New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver’s memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    5. Li, Chuan-Yao & Huang, Hai-Jun & Tang, Tie-Qiao, 2017. "Analysis of user equilibrium for staggered shifts in a single-entry traffic corridor with no late arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 8-18.
    6. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2018. "Effect of the driver’s desire for smooth driving on the car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 96-108.
    7. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "An extended lattice hydrodynamic model considering the driver’s sensory memory and delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 522-532.
    8. Jiang, Nan & Yu, Bin & Cao, Feng & Dang, Pengfei & Cui, Shaohua, 2021. "An extended visual angle car-following model considering the vehicle types in the adjacent lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    9. Chen, Can & Ge, Hongxia & Cheng, Rongjun, 2019. "Self-stabilizing analysis of an extended car-following model with consideration of expected effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    10. Zeng, Jiao-Yan & Ou, Hui & Tang, Tie-Qiao, 2019. "Feedback strategy with delay in a two-route traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    11. Chen, Can & Cheng, Rongjun & Ge, Hongxia, 2019. "An extended car-following model considering driver’s sensory memory and the backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 278-289.
    12. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2020. "An extended macro model accounting for the driver’s timid and aggressive attributions and bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Li, Chuan-Yao & Huang, Hai-Jun & Tang, Tie-Qiao, 2017. "Analysis of social optimum for staggered shifts in a single-entry traffic corridor with no late arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 275-283.
    14. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "Analysis of the historical time integral form of relative flux and feedback control in an extended lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 326-334.
    15. Ren, Weilin & Cheng, Rongjun & Ge, Hongxia, 2021. "Bifurcation analysis for a novel heterogeneous continuum model considering electronic throttle angle changes with memory," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    16. Qin, Shunda & He, Zhiting & Cheng, Rongjun, 2018. "An extended lattice hydrodynamic model based on control theory considering the memory effect of flux difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 809-816.
    17. Ma, Xinjuan & Ge, Hongxia & Cheng, Rongjun, 2019. "Influences of acceleration with memory on stability of traffic flow and vehicle’s fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 143-154.
    18. Huimin Liu & Yuhong Wang, 2021. "Impact of Strong Wind and Optimal Estimation of Flux Difference Integral in a Lattice Hydrodynamic Model," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    19. Zhaoze, Liu & Rongjun, Cheng & Hongxia, Ge, 2019. "Research on preceding vehicle’s taillight effect and energy consumption in an extended macro traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 304-314.
    20. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:598:y:2022:i:c:s037843712200303x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.