IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v632y2023ip2s0378437123009111.html
   My bibliography  Save this article

An improved car-following model considering the influence of multiple preceding vehicles in the same and two adjacent lanes

Author

Listed:
  • Qi, Weiwei
  • Ma, Siwei
  • Fu, Chuanyun

Abstract

To investigate the driver's car-following behavior in multiple lanes, this study develops an improved multi-lane full velocity difference (FVD) model. This model considers the positions and widths of multiple preceding vehicles in the same lane in the longitudinal direction, as well as the lateral offset distances of the immediately preceding vehicles in the same and two adjacent lanes in the lateral direction. Based on the linear stability analysis, it is found that an increase in the lateral offset distances between a vehicle and its predecessors in the same lane is negative to the traffic flow stability, whereas an increase in the widths of front vehicles in the same lane within a certain range is beneficial to the traffic flow stability. These theoretical findings are verified by numerical simulations. With the use of a publicly available dataset of vehicle trajectories from Southeast University, this study extracts the microscopic traffic flow parameters of the following vehicles and their associated vehicles on urban roads in China. Through parameter calibration and model comparison, it is found that the developed improved multi-lane FVD model has greater adaptability than the conventional FVD model and existing improved FVD models, and its mean absolute error and root mean square error are to some extent optimized. With the rapid development of connected vehicle technology, the developed multi-lane FVD model can be used to assist drivers in making rational behavioral decisions and improve traffic flow stability.

Suggested Citation

  • Qi, Weiwei & Ma, Siwei & Fu, Chuanyun, 2023. "An improved car-following model considering the influence of multiple preceding vehicles in the same and two adjacent lanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
  • Handle: RePEc:eee:phsmap:v:632:y:2023:i:p2:s0378437123009111
    DOI: 10.1016/j.physa.2023.129356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123009111
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    2. Gunay, Banihan, 2007. "Car following theory with lateral discomfort," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 722-735, August.
    3. Zhang, Jian & Tang, Tie-Qiao & Yu, Shao-Wei, 2018. "An improved car-following model accounting for the preceding car’s taillight," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1831-1837.
    4. Chen, Can & Cheng, Rongjun & Ge, Hongxia, 2019. "An extended car-following model considering driver’s sensory memory and the backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 278-289.
    5. Ou, Hui & Tang, Tie-Qiao, 2018. "An extended two-lane car-following model accounting for inter-vehicle communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 260-268.
    6. Zhang, Jing & Xu, Keyu & Li, Guangyao & Li, Shubin & Wang, Tao, 2021. "Dynamics of traffic flow affected by the future motion of multiple preceding vehicles under vehicle-connected environment: Modeling and stabilization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    7. Peng, Guanghan & Jia, Teti & Zhao, Hongzhuan & Tan, Huili, 2023. "Integrating the historical evolution information integral effect in car-following model under the V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    8. Hu, Yanmei & Ma, Tianshan & Chen, Jianzhong, 2021. "Multi-anticipative bi-directional visual field traffic flow models in the connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    9. Zhang, Xiangzhou & Shi, Zhongke & Yu, Shaowei & Ma, Lijing, 2023. "A new car-following model considering driver’s desired visual angle on sharp curves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    10. Peng, Yong & Liu, Shijie & Yu, Dennis Z., 2020. "An improved car-following model with consideration of multiple preceding and following vehicles in a driver’s view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    11. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    12. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    13. Wang, Jufeng & Sun, Fengxin & Cheng, Rongjun & Ge, Hongxia, 2018. "An extended heterogeneous car-following model with the consideration of the drivers’ different psychological headways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1113-1125.
    14. Ding, Heng & Pan, Hao & Bai, Haijian & Zheng, Xiaoyan & Chen, Jin & Zhang, Weihua, 2022. "Driving strategy of connected and autonomous vehicles based on multiple preceding vehicles state estimation in mixed vehicular traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    15. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    16. Zheng, Liang & Zhong, Shiquan & Jin, Peter J. & Ma, Shoufeng, 2012. "Influence of lateral discomfort on the stability of traffic flow based on visual angle car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5948-5959.
    17. Jiang, Nan & Yu, Bin & Cao, Feng & Dang, Pengfei & Cui, Shaohua, 2021. "An extended visual angle car-following model considering the vehicle types in the adjacent lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    18. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    19. Peng, Guanghan & Bai, Kezhao & Kuang, Hua, 2019. "Feedback control caused by honk effect incorporating the driver’s characteristics in lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    20. Peng, Guanghan & Kuang, Hua & Bai, Kezhao, 2019. "The impact of the individual difference on traffic flow under honk environment in lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Yu-Hang & Lü, Xing & Jiang, Rui & Jia, Bin & Gao, Ziyou, 2024. "Kinetic analysis and numerical tests of an adaptive car-following model for real-time traffic in ITS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhai, Cong & Li, Kening & Zhang, Ronghui & Peng, Tao & Zong, Changfu, 2024. "Phase diagram in multi-phase heterogeneous traffic flow model integrating the perceptual range difference under human-driven and connected vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Jiang, Nan & Yu, Bin & Cao, Feng & Dang, Pengfei & Cui, Shaohua, 2021. "An extended visual angle car-following model considering the vehicle types in the adjacent lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    3. Wang, Shutong & Zhu, Wen-Xing, 2022. "Modeling the heterogeneous traffic flow considering mean expected velocity field and effect of two-lane communication under connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    4. Zhang, Jing & Gao, Qian & Tian, Junfang & Cui, Fengying & Wang, Tao, 2024. "Car-following model based on spatial expectation effect in connected vehicle environment: modeling, stability analysis and identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    5. Wang, Xiaoning & Liu, Minzhuang & Ci, Yusheng & Wu, Lina, 2022. "Effect of front two adjacent vehicles’ velocity information on car-following model construction and stability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    6. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    7. Zhang, Xiangzhou & Shi, Zhongke & Yang, Qiaoli & An, Xiaodong, 2024. "Impacts of visuo-spatial working memory on the dynamic performance and safety of car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    8. Li, Shihao & Cheng, Rongjun & Ge, Hongxia, 2020. "An improved car-following model considering electronic throttle dynamics and delayed velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    9. Ding, Heng & Zhang, Lang & Chen, Jin & Zheng, Xiaoyan & Pan, Hao & Zhang, Weihua, 2023. "MPC-based dynamic speed control of CAVs in multiple sections upstream of the bottleneck area within a mixed vehicular environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    10. Kang, Chengjun & Qian, Yongsheng & Zeng, Junwei & Wei, Xuting & Zhang, Futao, 2024. "Analysis of stability, energy consumption and CO2 emissions in novel discrete-time car-following model with time delay under V2V environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    11. Peng, Yong & Liu, Shijie & Yu, Dennis Z., 2020. "An improved car-following model with consideration of multiple preceding and following vehicles in a driver’s view," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    12. Qin, Yanyan & Liu, Mingxuan & Hao, Wei, 2024. "Energy-optimal car-following model for connected automated vehicles considering traffic flow stability," Energy, Elsevier, vol. 298(C).
    13. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2018. "Effect of the driver’s desire for smooth driving on the car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 96-108.
    14. Ding, Heng & Pan, Hao & Bai, Haijian & Zheng, Xiaoyan & Chen, Jin & Zhang, Weihua, 2022. "Driving strategy of connected and autonomous vehicles based on multiple preceding vehicles state estimation in mixed vehicular traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    15. Yu, Bin & Zhou, Huixin & Wang, Lin & Wang, Zirui & Cui, Shaohua, 2021. "An extended two-lane car-following model considering the influence of heterogeneous speed information on drivers with different characteristics under honk environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    16. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "A car-following model considering the effect of electronic throttle opening angle over the curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    17. Yadav, Sunita & Redhu, Poonam, 2024. "Impact of driving prediction on headway and velocity in car-following model under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    18. Song, Tao & Zhu, Wen-Xing, 2020. "Study on state feedback control strategy for car-following system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    19. Ma, Guangyi & Li, Keping, 2024. "Analysis and simulation of vehicle following behavior with consideration of multiple time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    20. Zhang, Xiangzhou & Shi, Zhongke & Chen, Jianzhong & Ma, lijing, 2023. "A bi-directional visual angle car-following model considering collision sensitivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:632:y:2023:i:p2:s0378437123009111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.