IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v535y2019ics0378437119312853.html
   My bibliography  Save this article

An extended car-following model by considering the optimal velocity difference and electronic throttle angle

Author

Listed:
  • Yan, Chunyue
  • Ge, Hongxia
  • Cheng, Rongjun

Abstract

An extended car-following model is proposed by considering the influence of the optimal velocity difference and electronic throttle angle feedback from preceding vehicles. Stability conditions of the new model are gained via linear stability analysis. The time-dependent Ginzburg–Landau (TDGL) equation and the modified Korteweg–de Vries (mKdV) equation are inferred by nonlinear analysis. Furthermore, the relationships between the two nonlinear equations are also given. Numerical simulations are also carried out to explore how optimal velocity difference and electronic throttle angle influence the stability of traffic flow, which show that the new model can effectively stabilize traffic flow, which are consistent with the results of theoretical results.

Suggested Citation

  • Yan, Chunyue & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model by considering the optimal velocity difference and electronic throttle angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  • Handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s0378437119312853
    DOI: 10.1016/j.physa.2019.122216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119312853
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Tie-Qiao & Shi, Wei-Fang & Huang, Hai-Jun & Wu, Wen-Xiang & Song, Ziqi, 2019. "A route-based traffic flow model accounting for interruption factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 767-785.
    2. Jie Zhou & Zhong-Ke Shi, 2015. "Lattice hydrodynamic model for bidirectional pedestrian flow with the consideration of pedestrian density difference," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 26(08), pages 1-20.
    3. Zhu, Wen-Xing & Zhang, H.M., 2018. "Analysis of mixed traffic flow with human-driving and autonomous cars based on car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 274-285.
    4. Nagatani, Takashi, 1998. "Modified KdV equation for jamming transition in the continuum models of traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 261(3), pages 599-607.
    5. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "An extended lattice hydrodynamic model considering the driver’s sensory memory and delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 522-532.
    6. Ou, Hui & Tang, Tie-Qiao, 2018. "An extended two-lane car-following model accounting for inter-vehicle communication," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 260-268.
    7. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model considering driver’s memory and average speed of preceding vehicles with control strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 752-761.
    8. Wang, Tao & Tang, Tie-Qiao & Chen, Liang & Huang, Hai-Jun, 2019. "Analysis of trip cost allowing late arrival in a traffic corridor with one entry and one exit under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 387-398.
    9. Changxi Ma & Ruichun He & Wei Zhang, 2018. "Path optimization of taxi carpooling," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-15, August.
    10. Changtao-Jiang, & Rongjun-Cheng, & Hongxia-Ge,, 2019. "Mean-field flow difference model with consideration of on-ramp and off-ramp," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 465-476.
    11. Tang, Tie-Qiao & Luo, Xiao-Feng & Zhang, Jian & Chen, Liang, 2018. "Modeling electric bicycle’s lane-changing and retrograde behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1377-1386.
    12. Changxi Ma & Wei Hao & Fuquan Pan & Wang Xiang, 2018. "Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-22, June.
    13. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2018. "An extended car-following model under V2V communication environment and its delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 349-358.
    14. Jiang, Rui & Wang, Ruili & Wu, Qing-Song, 2007. "Two-lane totally asymmetric exclusion processes with particle creation and annihilation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(1), pages 247-256.
    15. Changxi Ma & Wei Hao & Ruichun He & Xiaoyan Jia & Fuquan Pan & Jing Fan & Ruiqi Xiong, 2018. "Distribution path robust optimization of electric vehicle with multiple distribution centers," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-16, March.
    16. Cheng, Rongjun & Wang, Yunong, 2019. "An extended lattice hydrodynamic model considering the delayed feedback control on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 510-517.
    17. Yu, Shaowei & Huang, Mengxing & Ren, Jia & Shi, Zhongke, 2016. "An improved car-following model considering velocity fluctuation of the immediately ahead car," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 1-17.
    18. Tang, Tie-Qiao & Zhang, Jian & Liu, Kai, 2017. "A speed guidance model accounting for the driver’s bounded rationality at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 45-52.
    19. Zhu, Wen-Xing & Zhang, Li-Dong, 2016. "Analysis of car-following model with cascade compensation strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 265-274.
    20. Cheng, Rongjun & Ge, Hongxia & Wang, Jufeng, 2017. "KdV–Burgers equation in a new continuum model based on full velocity difference model considering anticipation effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 52-59.
    21. Tang, Tie-Qiao & Rui, Ying-Xu & Zhang, Jian & Shang, Hua-Yan, 2018. "A cellular automation model accounting for bicycle’s group behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1782-1797.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Yulei & Ge, Hongxia & Cheng, Rongjun, 2019. "Nonlinear analysis for a modified continuum model considering electronic throttle (ET) and backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Qi, Xinyue & Ge, Hongxia & Cheng, Rongjun, 2019. "Analysis of a novel lattice hydrodynamic model considering density integral and “backward looking” effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 714-723.
    3. Huimin Liu & Yuhong Wang, 2021. "Impact of Strong Wind and Optimal Estimation of Flux Difference Integral in a Lattice Hydrodynamic Model," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    4. Chen, Can & Ge, Hongxia & Cheng, Rongjun, 2019. "Self-stabilizing analysis of an extended car-following model with consideration of expected effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Ma, Xinjuan & Ge, Hongxia & Cheng, Rongjun, 2019. "Influences of acceleration with memory on stability of traffic flow and vehicle’s fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 143-154.
    6. Li, Lixiang & Cheng, Rongjun & Ge, Hongxia, 2021. "New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver’s memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    7. Chen, Can & Cheng, Rongjun & Ge, Hongxia, 2019. "An extended car-following model considering driver’s sensory memory and the backward looking effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 278-289.
    8. Wang, Zihao & Ge, Hongxia & Cheng, Rongjun, 2020. "An extended macro model accounting for the driver’s timid and aggressive attributions and bounded rationality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    9. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "Analysis of the historical time integral form of relative flux and feedback control in an extended lattice hydrodynamic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 326-334.
    10. Li, Shihao & Cheng, Rongjun & Ge, Hongxia, 2020. "An improved car-following model considering electronic throttle dynamics and delayed velocity difference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    11. Zhaoze, Liu & Rongjun, Cheng & Hongxia, Ge, 2019. "Research on preceding vehicle’s taillight effect and energy consumption in an extended macro traffic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 304-314.
    12. Sun, Yuqing & Ge, Hongxia & Cheng, Rongjun, 2019. "A car-following model considering the effect of electronic throttle opening angle over the curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    13. Hongxia Ge & Siteng Li & Chunyue Yan, 2021. "An Extended Car-Following Model Based on Visual Angle and Electronic Throttle Effect," Mathematics, MDPI, vol. 9(22), pages 1-17, November.
    14. Peng, Guanghan & Jia, Teti & Kuang, Hua & Tan, Huili, 2022. "Energy consumption in a new lattice hydrodynamic model based on the delayed effect of collaborative information transmission under V2X environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    15. Ren, Weilin & Cheng, Rongjun & Ge, Hongxia, 2021. "Bifurcation analysis for a novel heterogeneous continuum model considering electronic throttle angle changes with memory," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    16. Sun, Fengxin & Wang, Jufeng & Cheng, Rongjun, 2019. "An improved anisotropic continuum model considering the driver’s desire for steady driving," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1449-1462.
    17. Wang, Qingying & Ge, Hongxia, 2019. "An improved lattice hydrodynamic model accounting for the effect of “backward looking” and flow integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 438-446.
    18. Chang, Yinyin & He, Zhiting & Cheng, Rongjun, 2019. "An extended lattice hydrodynamic model considering the driver’s sensory memory and delayed-feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 522-532.
    19. Liu, Zhaoze & Ge, Hongxia & Cheng, Rongjun, 2018. "KdV–Burgers equation in the modified continuum model considering the effect of friction and radius on a curved road," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1218-1227.
    20. Yongjiang-Wang, & Han-Song, & Rongjun-Cheng,, 2019. "TDGL and mKdV equations for an extended car-following model with the consideration of driver’s memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 440-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s0378437119312853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.