IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v137y2020ics0960077920302320.html
   My bibliography  Save this article

Weak signal detection based on Mathieu-Duffing oscillator with time-delay feedback and multiplicative noise

Author

Listed:
  • Wang, QiuBao
  • Yang, YueJuan
  • Zhang, Xing

Abstract

This paper presents analytical studies of the stochastic differential equation with Mathieu-Duffing oscillator under velocity feedback control with a time delay. We derive the analytic expressions of the stationary probability density function by the stochastic center manifold and stochastic averaging method to investigate the stochastic bifurcation. We first propose a three-step procedure for weak signals detecting: (1) Ascertain the existence and detect the frequency by the “transient vacancy”(TV) of chaotic motion. (2) Detect the phase based on Melnikov function. (3) After that the frequency and phase are known, we detect the amplitude by the transition between chaotic and large-scale periodic motion. In addition, the effects of the time-delayed feedback on the theoretical chaotic threshold are investigated under Gaussian white noise based on the Langevin and the Melnikov function. The time-delayed feedback τ can reduce the theoretical chaotic threshold, which is beneficial to detect the weak signal with the change of motion state. Subsequently, the “TV” method has obvious advantages of higher accuracy from the perspective of numerical simulation.

Suggested Citation

  • Wang, QiuBao & Yang, YueJuan & Zhang, Xing, 2020. "Weak signal detection based on Mathieu-Duffing oscillator with time-delay feedback and multiplicative noise," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s0960077920302320
    DOI: 10.1016/j.chaos.2020.109832
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109832?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zaitang Huang & Weihua Lei, 2013. "Deterministic and Stochastic Bifurcations of the Catalytic CO Oxidation on Ir(111) Surfaces with Multiple Delays," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-14, March.
    2. Yilmaz, Ergin & Ozer, Mahmut, 2015. "Delayed feedback and detection of weak periodic signals in a stochastic Hodgkin–Huxley neuron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 455-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Jue & Yuan, Wei-bin & Li, Long-yuan, 2021. "Cross-sectional flattening-induced nonlinear damped vibration of elastic tubes subjected to transverse loads," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Hossein Amini & Ali Mehrizi-Sani & Reza Noroozian, 2024. "Passive Islanding Detection of Inverter-Based Resources in a Noisy Environment," Energies, MDPI, vol. 17(17), pages 1-20, September.
    3. Huang, Pengfei & Chai, Yi & Chen, Xiaolong, 2022. "Multiple dynamics analysis of Lorenz-family systems and the application in signal detection," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Minghui Lv & Xiaopeng Yan & Ke Wang & Xinhong Hao & Jian Dai, 2024. "Adaptive Measurement and Parameter Estimation for Low-SNR PRBC-PAM Signal Based on Adjusting Zero Value and Chaotic State Ratio," Mathematics, MDPI, vol. 12(20), pages 1-21, October.
    5. Yang, GuiJiang & Ai, Hao & Liu, Wei & Wang, Qiubao, 2023. "Weak signal detection based on variable-situation-potential with time-delay feedback and colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    6. Li, Haiping & Tian, Ruilan & Xue, Qiang & Zhang, Yangkun & Zhang, Xiaolong, 2022. "Improved variable scale-convex-peak method for weak signal detection," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yaru & Liu, Shenquan & Zhan, Feibiao & Zhang, Xiaohan, 2020. "Firing patterns of the modified Hodgkin–Huxley models subject to Taylor ’s formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    2. Chunni Wang & Shengli Guo & Ying Xu & Jun Ma & Jun Tang & Faris Alzahrani & Aatef Hobiny, 2017. "Formation of Autapse Connected to Neuron and Its Biological Function," Complexity, Hindawi, vol. 2017, pages 1-9, February.
    3. Lu, Lulu & Ge, Mengyan & Xu, Ying & Jia, Ya, 2019. "Phase synchronization and mode transition induced by multiple time delays and noises in coupled FitzHugh–Nagumo model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Uzun, Rukiye & Yilmaz, Ergin & Ozer, Mahmut, 2017. "Effects of autapse and ion channel block on the collective firing activity of Newman–Watts small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 386-396.
    5. Baysal, Veli & Calim, Ali, 2023. "Stochastic resonance in a single autapse–coupled neuron," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    6. Yilmaz, Ergin & Baysal, Veli & Ozer, Mahmut & Perc, Matjaž, 2016. "Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 538-546.
    7. Yu, Haitao & Galán, Roberto F. & Wang, Jiang & Cao, Yibin & Liu, Jing, 2017. "Stochastic resonance, coherence resonance, and spike timing reliability of Hodgkin–Huxley neurons with ion-channel noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 263-275.
    8. Ni Zhang & Dongxi Li & Yanya Xing, 2021. "Autapse-induced multiple inverse stochastic resonance in a neural system," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    9. Uzun, Rukiye, 2017. "Influences of autapse and channel blockage on multiple coherence resonance in a single neuron," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 203-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:137:y:2020:i:c:s0960077920302320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.