IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v520y2019icp317-321.html
   My bibliography  Save this article

A new recommender algorithm on signed networks

Author

Listed:
  • Zhang, Peng
  • Song, Xiaoyu
  • Xue, Leyang
  • Gu, Ke

Abstract

Many real-world systems display opposite relationships and can be depicted as signed networks to study. On signed networks, positive/negative edges mean users like/dislike objects. This information is valuable and should be considered into recommendations. In this paper, we mainly study recommendations on signed networks that contain users’ purchase behaviors as well as attitude information, which not only can validate the accuracy of recommendation algorithms but also measure the users’ satisfaction degree after purchasing. Accordingly, we proposed a new recommender algorithm by defining an index P. We further compared our method to other four classical algorithms on three disparate datasets. The results show the accuracy of our method improves at most three times higher than other classic algorithms on recommending negative edges. In addition, the recommendation diversity of our method performs better than heat conduction algorithm which is generally recognized as an effective algorithm in terms of diversity. For instance, the value of Novelty dropped from 19.74 to 3.04 when comparing the heat conduction algorithm with our method on the Movielens dataset. In a word, our method can recommend the objects that are novel to users and ensure users’ satisfaction after purchasing.

Suggested Citation

  • Zhang, Peng & Song, Xiaoyu & Xue, Leyang & Gu, Ke, 2019. "A new recommender algorithm on signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 317-321.
  • Handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:317-321
    DOI: 10.1016/j.physa.2019.01.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119300561
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Resnick & Neophytos Iacovou & Mitesh Suchak & Peter Bergstrom & John Riedl, 1994. "GroupLens: An Open Architecture for Collaborative Filtering of Netnews," Working Paper Series 165, MIT Center for Coordination Science.
    2. Yanbo Zhou & Linyuan Lü & Weiping Liu & Jianlin Zhang, 2013. "The Power of Ground User in Recommender Systems," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-11, August.
    3. Gu, Ke & Fan, Ying & Zeng, An & Zhou, Jianlin & Di, Zengru, 2018. "Analysis on large-scale rating systems based on the signed network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 99-109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Ke & Fan, Ying & Di, Zengru, 2020. "How to predict recommendation lists that users do not like," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Li, Ai-Wen & Xu, Xiao-Ke & Fan, Ying, 2022. "Immunization strategies for false information spreading on signed social networks," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    2. Lee, Charles M.C. & Ma, Paul & Wang, Charles C.Y., 2015. "Search-based peer firms: Aggregating investor perceptions through internet co-searches," Journal of Financial Economics, Elsevier, vol. 116(2), pages 410-431.
    3. Shuang-Bo Sun & Zhi-Heng Zhang & Xin-Ling Dong & Heng-Ru Zhang & Tong-Jun Li & Lin Zhang & Fan Min, 2017. "Integrating Triangle and Jaccard similarities for recommendation," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-16, August.
    4. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    5. Sohn, Jeong Woong & Kim, Jin Ki, 2020. "Factors that influence purchase intentions in social commerce," Technology in Society, Elsevier, vol. 63(C).
    6. Zhang, Yi & Robinson, Douglas K.R. & Porter, Alan L. & Zhu, Donghua & Zhang, Guangquan & Lu, Jie, 2016. "Technology roadmapping for competitive technical intelligence," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 175-186.
    7. Molaie, Mir Majid & Lee, Wonjae, 2022. "Economic corollaries of personalized recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    8. Zhu, Xuzhen & Tian, Hui & Zhang, Tianqiao, 2018. "Symmetrical information filtering via punishing superfluous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 1-9.
    9. Geng, Bingrui & Li, Lingling & Jiao, Licheng & Gong, Maoguo & Cai, Qing & Wu, Yue, 2015. "NNIA-RS: A multi-objective optimization based recommender system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 383-397.
    10. Zhang, Jing & Peng, Qinke & Sun, Shiquan & Liu, Che, 2014. "Collaborative filtering recommendation algorithm based on user preference derived from item domain features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 66-76.
    11. Chen, Jianrui & Wei, Lidan & Uliji, & Zhang, Li, 2018. "Dynamic evolutionary clustering approach based on time weight and latent attributes for collaborative filtering recommendation," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 8-18.
    12. Li, Wen-Jun & Dong, Qiang & Shi, Yang-Bo & Fu, Yan & He, Jia-Lin, 2017. "Effect of recent popularity on heat-conduction based recommendation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 334-343.
    13. Hausmann, Ricardo & Stock, Daniel P. & Yıldırım, Muhammed A., 2022. "Implied comparative advantage," Research Policy, Elsevier, vol. 51(8).
    14. Hael Al-bashiri & Mansoor Abdullateef Abdulgabber & Awanis Romli & Hasan Kahtan, 2018. "An improved memory-based collaborative filtering method based on the TOPSIS technique," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-26, October.
    15. Su, Zhan & Zheng, Xiliang & Ai, Jun & Shen, Yuming & Zhang, Xuanxiong, 2020. "Link prediction in recommender systems based on vector similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    16. Latha, R., 2022. "Enhancing recommendation competence in nearest neighbour models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    17. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
    18. Muhammed A. Yildirim, 2014. "Implied Comparative Advantage," CID Working Papers 276, Center for International Development at Harvard University.
    19. Gu, Ke & Fan, Ying & Di, Zengru, 2020. "How to predict recommendation lists that users do not like," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    20. Nie, Da-Cheng & An, Ya-Hui & Dong, Qiang & Fu, Yan & Zhou, Tao, 2015. "Information filtering via balanced diffusion on bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 44-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:317-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.