IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v560y2020ics0378437120306038.html
   My bibliography  Save this article

Link prediction in recommender systems based on vector similarity

Author

Listed:
  • Su, Zhan
  • Zheng, Xiliang
  • Ai, Jun
  • Shen, Yuming
  • Zhang, Xuanxiong

Abstract

Link prediction provides methods for estimating potential connections in complex networks that have theoretical and practical relevance for personalized recommendations and various other applications. Traditional collaborative filtering algorithms treat similarity as a scalar value causing some information loss. This paper is primarily a novel approach to calculating user similarity that uses a vector to measure user similarity across multiple dimensions based on the items’ characteristics. Our approach defines global similarity, local similarity and meta similarity to calculate vector similarity as indicators of similarity between users, revealing and measuring the difference between users’ general preferences in different scenarios. The experimental results show that the presented similarity methods improve prediction accuracy in recommender systems compared to some state-of-art approaches. Our results confirm that user similarity can be measured differently when considering different classes of items, which extends our understanding of similarity measurement.

Suggested Citation

  • Su, Zhan & Zheng, Xiliang & Ai, Jun & Shen, Yuming & Zhang, Xuanxiong, 2020. "Link prediction in recommender systems based on vector similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
  • Handle: RePEc:eee:phsmap:v:560:y:2020:i:c:s0378437120306038
    DOI: 10.1016/j.physa.2020.125154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120306038
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Resnick & Neophytos Iacovou & Mitesh Suchak & Peter Bergstrom & John Riedl, 1994. "GroupLens: An Open Architecture for Collaborative Filtering of Netnews," Working Paper Series 165, MIT Center for Coordination Science.
    2. Hui Li & Yang Qu & Shikai Guo & Guofeng Gao & Rong Chen & Guo Chen, 2020. "Surprise Bug Report Prediction Utilizing Optimized Integration with Imbalanced Learning Strategy," Complexity, Hindawi, vol. 2020, pages 1-14, February.
    3. Zare, Hadi & Nikooie Pour, Mina Abd & Moradi, Parham, 2019. "Enhanced recommender system using predictive network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 322-337.
    4. Ai, Jun & Su, Zhan & Li, Yan & Wu, Chunxue, 2019. "Link prediction based on a spatial distribution model with fuzzy link importance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    5. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    6. Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
    7. Hosseinzadeh Aghdam, Mehdi, 2019. "Context-aware recommender systems using hierarchical hidden Markov model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 89-98.
    8. Yu, Fei & Zeng, An & Gillard, Sébastien & Medo, Matúš, 2016. "Network-based recommendation algorithms: A review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 192-208.
    9. He, Xing-Sheng & Zhou, Ming-Yang & Zhuo, Zhao & Fu, Zhong-Qian & Liu, Jian-Guo, 2015. "Predicting online ratings based on the opinion spreading process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 658-664.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ai, Jun & Cai, Yifang & Su, Zhan & Zhang, Kuan & Peng, Dunlu & Chen, Qingkui, 2022. "Predicting user-item links in recommender systems based on similarity-network resource allocation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ai, Jun & Cai, Yifang & Su, Zhan & Zhang, Kuan & Peng, Dunlu & Chen, Qingkui, 2022. "Predicting user-item links in recommender systems based on similarity-network resource allocation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    3. Swarup Chattopadhyay & Tanmay Basu & Asit K. Das & Kuntal Ghosh & Late C. A. Murthy, 2021. "Towards effective discovery of natural communities in complex networks and implications in e-commerce," Electronic Commerce Research, Springer, vol. 21(4), pages 917-954, December.
    4. You, Tao & Cheng, Hui-Min & Ning, Yi-Zi & Shia, Ben-Chang & Zhang, Zhong-Yuan, 2016. "Community detection in complex networks using density-based clustering algorithm and manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 221-230.
    5. Gao, Yang & Zhang, Hongli & Zhang, Yue, 2019. "Overlapping communities from lines and triangles in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 455-466.
    6. Zhou, Wen & Jia, Yifan, 2017. "Predicting links based on knowledge dissemination in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 561-568.
    7. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    8. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    9. Hao Liao & Xiao-Min Huang & Xing-Tong Wu & Ming-Kai Liu & Alexandre Vidmer & Mingyang Zhou & Yi-Cheng Zhang, 2019. "Enhancing countries' fitness with recommender systems on the international trade network," Papers 1904.02412, arXiv.org.
    10. Yan, Erjia & Guns, Raf, 2014. "Predicting and recommending collaborations: An author-, institution-, and country-level analysis," Journal of Informetrics, Elsevier, vol. 8(2), pages 295-309.
    11. Hao Liao & Xiao-Min Huang & Xing-Tong Wu & Ming-Kai Liu & Alexandre Vidmer & Ming-Yang Zhou & Yi-Cheng Zhang, 2018. "Enhancing Countries’ Fitness with Recommender Systems on the International Trade Network," Complexity, Hindawi, vol. 2018, pages 1-12, October.
    12. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Jo, Hang-Hyun & Moon, Eunyoung, 2016. "Dynamical complexity in the perception-based network formation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 282-292.
    14. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    15. Lee, Charles M.C. & Ma, Paul & Wang, Charles C.Y., 2015. "Search-based peer firms: Aggregating investor perceptions through internet co-searches," Journal of Financial Economics, Elsevier, vol. 116(2), pages 410-431.
    16. Dong-Rui Chen & Chuang Liu & Yi-Cheng Zhang & Zi-Ke Zhang, 2019. "Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices," Complexity, Hindawi, vol. 2019, pages 1-17, October.
    17. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    18. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    19. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    20. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:560:y:2020:i:c:s0378437120306038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.