IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v507y2018icp99-109.html
   My bibliography  Save this article

Analysis on large-scale rating systems based on the signed network

Author

Listed:
  • Gu, Ke
  • Fan, Ying
  • Zeng, An
  • Zhou, Jianlin
  • Di, Zengru

Abstract

In many user–object online rating systems, it is obviously that the ratings usually show the users’ attitudes: like or dislike the objects. Inevitably there is a need to introduce the sign into the rating systems. We first focus on how to construct signed bipartite networks on rating systems and reveal the basic properties of them. We also analyze the basic motif of signed bipartite networks: quadrangle. Then we introduce a novel projection method Signed Common Neighbors (SCN) to get the projection to signed user-network. The basic statistics of the projections show that SCN can well reflect the roles of negative edges.

Suggested Citation

  • Gu, Ke & Fan, Ying & Zeng, An & Zhou, Jianlin & Di, Zengru, 2018. "Analysis on large-scale rating systems based on the signed network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 99-109.
  • Handle: RePEc:eee:phsmap:v:507:y:2018:i:c:p:99-109
    DOI: 10.1016/j.physa.2018.05.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118305922
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.05.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao Liao & An Zeng & Rui Xiao & Zhuo-Ming Ren & Duan-Bing Chen & Yi-Cheng Zhang, 2014. "Ranking Reputation and Quality in Online Rating Systems," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    2. Liu, Xiao-Lu & Liu, Jian-Guo & Yang, Kai & Guo, Qiang & Han, Jing-Ti, 2017. "Identifying online user reputation of user–object bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 508-516.
    3. Li, Menghui & Fan, Ying & Chen, Jiawei & Gao, Liang & Di, Zengru & Wu, Jinshan, 2005. "Weighted networks of scientific communication: the measurement and topological role of weight," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 643-656.
    4. Zhang, Peng & Wang, Jinliang & Li, Xiaojia & Li, Menghui & Di, Zengru & Fan, Ying, 2008. "Clustering coefficient and community structure of bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6869-6875.
    5. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    6. Li, Le & Gu, Ke & Zeng, An & Fan, Ying & Di, Zengru, 2018. "Modeling online social signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 345-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Ke & Fan, Ying & Di, Zengru, 2020. "How to predict recommendation lists that users do not like," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Zhang, Peng & Song, Xiaoyu & Xue, Leyang & Gu, Ke, 2019. "A new recommender algorithm on signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 317-321.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    2. Wu, Ying-Ying & Guo, Qiang & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Effect of the initial configuration for user–object reputation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 288-294.
    3. Sun, Hong-liang & Ch’ng, Eugene & Yong, Xi & Garibaldi, Jonathan M. & See, Simon & Chen, Duan-bing, 2018. "A fast community detection method in bipartite networks by distance dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 108-120.
    4. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    5. Cui, Yaozu & Wang, Xingyuan, 2016. "Detecting one-mode communities in bipartite networks by bipartite clustering triangular," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 307-315.
    6. Liao, Hao & Zeng, An & Zhang, Yi-Cheng, 2015. "Predicting missing links via correlation between nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 216-223.
    7. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    8. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    9. Weihua Lei & Luiz G. A. Alves & Luís A. Nunes Amaral, 2022. "Forecasting the evolution of fast-changing transportation networks using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Li, Wei & Huang, Ce & Wang, Miao & Chen, Xi, 2017. "Stepping community detection algorithm based on label propagation and similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 145-155.
    11. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    12. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    13. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    14. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
    15. Yichi Zhang & Zhiliang Dong & Sen Liu & Peixiang Jiang & Cuizhi Zhang & Chao Ding, 2021. "Forecast of International Trade of Lithium Carbonate Products in Importing Countries and Small-Scale Exporting Countries," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    16. Liu, Jin-Hu & Zhu, Yu-Xiao & Zhou, Tao, 2016. "Improving personalized link prediction by hybrid diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 199-207.
    17. Peixin Dong & Dongyuan Li & Jianping Xing & Haohui Duan & Yong Wu, 2019. "A Method of Bus Network Optimization Based on Complex Network and Beidou Vehicle Location," Future Internet, MDPI, vol. 11(4), pages 1-12, April.
    18. Chunjiang Liu & Yikun Han & Haiyun Xu & Shihan Yang & Kaidi Wang & Yongye Su, 2024. "A Community Detection and Graph-Neural-Network-Based Link Prediction Approach for Scientific Literature," Mathematics, MDPI, vol. 12(3), pages 1-20, January.
    19. Giorgos Stamatelatos & George Drosatos & Sotirios Gyftopoulos & Helen Briola & Pavlos S. Efraimidis, 2021. "Point-of-interest lists and their potential in recommendation systems," Information Technology & Tourism, Springer, vol. 23(2), pages 209-239, June.
    20. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:507:y:2018:i:c:p:99-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.