IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v506y2018icp679-691.html
   My bibliography  Save this article

A trust-based recommendation method using network diffusion processes

Author

Listed:
  • Chen, Ling-Jiao
  • Gao, Jian

Abstract

A variety of rating-based recommendation methods have been extensively studied including the well-known collaborative filtering approaches and some network diffusion-based methods, however, social trust relations are not sufficiently considered when making recommendations. In this paper, we contribute to the literature by proposing a trust-based recommendation method, named CosRA+T, after integrating the information of trust relations into the resource-redistribution process. Specifically, a tunable parameter is used to scale the resources received by trusted users before the redistribution back to the objects. Interestingly, we find an optimal scaling parameter for the proposed CosRA+T method to achieve its best recommendation accuracy, and the optimal value seems to be universal under several evaluation metrics across different datasets. Moreover, results of extensive experiments on the two real-world rating datasets with trust relations, Epinions and FriendFeed, suggest that CosRA+T has a remarkable improvement in overall accuracy, diversity and novelty. Our work takes a step towards designing better recommendation algorithms by employing multiple resources of social network information.

Suggested Citation

  • Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
  • Handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:679-691
    DOI: 10.1016/j.physa.2018.04.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711830517X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.04.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xiao-Lu & Liu, Jian-Guo & Yang, Kai & Guo, Qiang & Han, Jing-Ti, 2017. "Identifying online user reputation of user–object bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 508-516.
    2. Yuan, Jia & Zhang, Qian-Ming & Gao, Jian & Zhang, Linyan & Wan, Xue-Song & Yu, Xiao-Jun & Zhou, Tao, 2016. "Promotion and resignation in employee networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 442-447.
    3. Hao Liao & An Zeng & Rui Xiao & Zhuo-Ming Ren & Duan-Bing Chen & Yi-Cheng Zhang, 2014. "Ranking Reputation and Quality in Online Rating Systems," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    4. Zhang, Cheng-Jun & Zeng, An, 2012. "Behavior patterns of online users and the effect on information filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1822-1830.
    5. Gao, Jian & Zhou, Tao, 2017. "Evaluating user reputation in online rating systems via an iterative group-based ranking method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 546-560.
    6. Liu, Jian-Guo & Guo, Qiang & Zhang, Yi-Cheng, 2011. "Information filtering via weighted heat conduction algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2414-2420.
    7. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    8. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    9. Song, Wen-Jun & Guo, Qiang & Liu, Jian-Guo, 2014. "Improved hybrid information filtering based on limited time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 192-197.
    10. Liu, Run-Ran & Jia, Chun-Xiao & Zhou, Tao & Sun, Duo & Wang, Bing-Hong, 2009. "Personal recommendation via modified collaborative filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 462-468.
    11. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    12. Yu, Fei & Zeng, An & Gillard, Sébastien & Medo, Matúš, 2016. "Network-based recommendation algorithms: A review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 192-208.
    13. Gao, Jian & Zhou, Tao, 2018. "Quantifying China’s regional economic complexity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1591-1603.
    14. Paul Resnick & Neophytos Iacovou & Mitesh Suchak & Peter Bergstrom & John Riedl, 1994. "GroupLens: An Open Architecture for Collaborative Filtering of Netnews," Working Paper Series 165, MIT Center for Coordination Science.
    15. Clemes, Michael D. & Gan, Christopher & Zhang, Junli, 2014. "An empirical analysis of online shopping adoption in Beijing, China," Journal of Retailing and Consumer Services, Elsevier, vol. 21(3), pages 364-375.
    16. Yang, Xiao & Gao, Jian & Liu, Jin-Hu & Zhou, Tao, 2018. "Height conditions salary expectations: Evidence from large-scale data in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 86-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Yubo & Zhu, Yunfang & Du, Xin & Jin, Tao, 2019. "The implicit network inferred from users’ residences and workplaces enhancing collaborative recommendation on smartphones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Lee, Yan-Li & Zhou, Tao & Yang, Kexin & Du, Yajun & Pan, Liming, 2023. "Personalized recommender systems based on social relationships and historical behaviors," Applied Mathematics and Computation, Elsevier, vol. 437(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiao & Gao, Jian & Liu, Jin-Hu & Zhou, Tao, 2018. "Height conditions salary expectations: Evidence from large-scale data in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 86-97.
    2. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    3. Wu, Ying-Ying & Guo, Qiang & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Effect of the initial configuration for user–object reputation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 288-294.
    4. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    5. Hu, Liang & Ren, Liang & Lin, Wenbin, 2018. "A reconsideration of negative ratings for network-based recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 690-701.
    6. Yu, Fei & Zeng, An & Gillard, Sébastien & Medo, Matúš, 2016. "Network-based recommendation algorithms: A review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 192-208.
    7. Wang, Yang & Han, Lixin, 2020. "Personalized recommendation via network-based inference with time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    8. Chandra, Anita & Garg, Himanshu & Maiti, Abyayananda, 2019. "A general growth model for online emerging user–object bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 370-384.
    9. Gao, Jian & Zhou, Tao, 2017. "Evaluating user reputation in online rating systems via an iterative group-based ranking method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 546-560.
    10. Gu, Ke & Fan, Ying & Zeng, An & Zhou, Jianlin & Di, Zengru, 2018. "Analysis on large-scale rating systems based on the signed network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 99-109.
    11. Wen, Yuan & Liu, Yun & Zhang, Zhen-Jiang & Xiong, Fei & Cao, Wei, 2014. "Compare two community-based personalized information recommendation algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 199-209.
    12. Song, Wen-Jun & Guo, Qiang & Liu, Jian-Guo, 2014. "Improved hybrid information filtering based on limited time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 192-197.
    13. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    14. Jiang, Liang-Chao & Liu, Run-Ran & Jia, Chun-Xiao, 2022. "User-location distribution serves as a useful feature in item-based collaborative filtering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    15. Jian Gao & Tao Zhou, 2017. "Quantifying China's Regional Economic Complexity," Papers 1703.01292, arXiv.org, revised Nov 2017.
    16. Wang, Ximeng & Liu, Yun & Xiong, Fei, 2016. "Improved personalized recommendation based on a similarity network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 271-280.
    17. Liao, Hao & Zeng, An & Zhang, Yi-Cheng, 2015. "Predicting missing links via correlation between nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 216-223.
    18. Ai, Jun & Cai, Yifang & Su, Zhan & Zhang, Kuan & Peng, Dunlu & Chen, Qingkui, 2022. "Predicting user-item links in recommender systems based on similarity-network resource allocation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    19. Su, Zhan & Zheng, Xiliang & Ai, Jun & Shen, Yuming & Zhang, Xuanxiong, 2020. "Link prediction in recommender systems based on vector similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    20. Lee, Yan-Li & Zhou, Tao & Yang, Kexin & Du, Yajun & Pan, Liming, 2023. "Personalized recommender systems based on social relationships and historical behaviors," Applied Mathematics and Computation, Elsevier, vol. 437(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:679-691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.