IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v396y2014icp66-76.html
   My bibliography  Save this article

Collaborative filtering recommendation algorithm based on user preference derived from item domain features

Author

Listed:
  • Zhang, Jing
  • Peng, Qinke
  • Sun, Shiquan
  • Liu, Che

Abstract

Personalized recommendation is an effective method for fighting “information overload”. However, its performance is often limited by several factors, such as sparsity and cold-start. Some researchers utilize user-created tags of social tagging system to depict user preferences for personalized recommendation, but it is difficult to identify users with similar interests due to the differences between users’ descriptive habits and the diversity of language expression. In order to find a better way to depict user preferences to make it more suitable for personalized recommendation, we introduce a framework that utilizes item domain features to construct user preference models and combines these models with collaborative filtering (CF). The framework not only integrates domain characteristics into a personalized recommendation, but also aids to detecting the implicit relationships among users, which are missed by the conventional CF method. The experimental results show our method achieves the better result, and prove the user preference model is more effective for recommendation.

Suggested Citation

  • Zhang, Jing & Peng, Qinke & Sun, Shiquan & Liu, Che, 2014. "Collaborative filtering recommendation algorithm based on user preference derived from item domain features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 66-76.
  • Handle: RePEc:eee:phsmap:v:396:y:2014:i:c:p:66-76
    DOI: 10.1016/j.physa.2013.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113010558
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2013.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Dong & Zhou, Tao & Cimini, Giulio & Wu, Pei & Liu, Weiping & Zhang, Yi-Cheng, 2011. "Effective mechanism for social recommendation of news," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2117-2126.
    2. Zhang, Yin & Zhang, Bin & Gao, Kening & Guo, Pengwei & Sun, Daming, 2012. "Combining content and relation analysis for recommendation in social tagging systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5759-5768.
    3. Shang, Ming-Sheng & Zhang, Zi-Ke & Zhou, Tao & Zhang, Yi-Cheng, 2010. "Collaborative filtering with diffusion-based similarity on tripartite graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(6), pages 1259-1264.
    4. Zhang, Zi-Ke & Zhou, Tao & Zhang, Yi-Cheng, 2010. "Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 179-186.
    5. Paul Resnick & Neophytos Iacovou & Mitesh Suchak & Peter Bergstrom & John Riedl, 1994. "GroupLens: An Open Architecture for Collaborative Filtering of Netnews," Working Paper Series 165, MIT Center for Coordination Science.
    6. Yin, Chun-Xia & Peng, Qin-Ke & Chu, Tao, 2012. "Personal artist recommendation via a listening and trust preference network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 1991-1999.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    2. Tae-Yeun Kim & Sung Bum Pan & Sung-Hwan Kim, 2020. "Sentiment Digitization Modeling for Recommendation System," Sustainability, MDPI, vol. 12(12), pages 1-27, June.
    3. Li, Man & Wen, Luosheng & Chen, Feiyu, 2021. "A novel Collaborative Filtering recommendation approach based on Soft Co-Clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    4. Liang Xiao & Qibei Lu & Feipeng Guo, 2020. "Mobile Personalized Recommendation Model based on Privacy Concerns and Context Analysis for the Sustainable Development of M-commerce," Sustainability, MDPI, vol. 12(7), pages 1-20, April.
    5. Jun Yao & Jianhui Chen, 2023. "A Study on the Characteristics of Middle-aged Chinese Female Users Based on Clothing Needs," Asian Social Science, Canadian Center of Science and Education, vol. 19(4), pages 1-86, August.
    6. Sang-Min Choi & Dongwoo Lee & Kiyoung Jang & Chihyun Park & Suwon Lee, 2023. "Improving Data Sparsity in Recommender Systems Using Matrix Regeneration with Item Features," Mathematics, MDPI, vol. 11(2), pages 1-26, January.
    7. Ramezani, Mohsen & Yaghmaee, Farzin, 2016. "A novel video recommendation system based on efficient retrieval of human actions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 607-623.
    8. Yong Eui Kim & Sang-Min Choi & Dongwoo Lee & Yeong Geon Seo & Suwon Lee, 2023. "A Reliable Prediction Algorithm Based on Genre2Vec for Item-Side Cold-Start Problems in Recommender Systems with Smart Contracts," Mathematics, MDPI, vol. 11(13), pages 1-25, July.
    9. Moradi, Parham & Ahmadian, Sajad & Akhlaghian, Fardin, 2015. "An effective trust-based recommendation method using a novel graph clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 462-481.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moradi, Parham & Ahmadian, Sajad & Akhlaghian, Fardin, 2015. "An effective trust-based recommendation method using a novel graph clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 462-481.
    2. Zhang, Yin & Gao, Kening & Zhang, Bin, 2015. "The concept exploration model and an application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 430-442.
    3. Li, Jianguo & Tang, Yong & Chen, Jiemin, 2017. "Leveraging tagging and rating for recommendation: RMF meets weighted diffusion on tripartite graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 398-411.
    4. Zhang, Yin & Zhang, Bin & Gao, Kening & Guo, Pengwei & Sun, Daming, 2012. "Combining content and relation analysis for recommendation in social tagging systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5759-5768.
    5. Zhang, Chu-Xu & Zhang, Zi-Ke & Yu, Lu & Liu, Chuang & Liu, Hao & Yan, Xiao-Yong, 2014. "Information filtering via collaborative user clustering modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 195-203.
    6. Yin, Chun-Xia & Peng, Qin-Ke & Chu, Tao, 2012. "Personal artist recommendation via a listening and trust preference network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 1991-1999.
    7. Geng, Bingrui & Li, Lingling & Jiao, Licheng & Gong, Maoguo & Cai, Qing & Wu, Yue, 2015. "NNIA-RS: A multi-objective optimization based recommender system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 383-397.
    8. Ramezani, Mohsen & Yaghmaee, Farzin, 2016. "A novel video recommendation system based on efficient retrieval of human actions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 607-623.
    9. Lee, Charles M.C. & Ma, Paul & Wang, Charles C.Y., 2015. "Search-based peer firms: Aggregating investor perceptions through internet co-searches," Journal of Financial Economics, Elsevier, vol. 116(2), pages 410-431.
    10. Ramezani, Mohsen & Moradi, Parham & Akhlaghian, Fardin, 2014. "A pattern mining approach to enhance the accuracy of collaborative filtering in sparse data domains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 72-84.
    11. Shuang-Bo Sun & Zhi-Heng Zhang & Xin-Ling Dong & Heng-Ru Zhang & Tong-Jun Li & Lin Zhang & Fan Min, 2017. "Integrating Triangle and Jaccard similarities for recommendation," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-16, August.
    12. Abdul Khalique Shaikh & Saadat M. Alhashmi & Rajendran Parthiban, 2016. "A Proximity and Semantic-Aware Optimisation Model for Sub-Domain-Based Decentralised Resource Discovery in Grid Computing," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-25, June.
    13. Yeh, Duen-Yian & Cheng, Ching-Hsue, 2015. "Recommendation system for popular tourist attractions in Taiwan using Delphi panel and repertory grid techniques," Tourism Management, Elsevier, vol. 46(C), pages 164-176.
    14. Zhang, Peng & Song, Xiaoyu & Xue, Leyang & Gu, Ke, 2019. "A new recommender algorithm on signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 317-321.
    15. Zhang, Shujuan & Jin, Zhen & Zhang, Juan, 2016. "The dynamical modeling and simulation analysis of the recommendation on the user–movie network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 310-319.
    16. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    17. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    18. Hu, Ya-Han & Tai, Chun-Tien & Liu, Kang Ernest & Cai, Cheng-Fang, 2020. "Identification of highly-cited papers using topic-model-based and bibliometric features: the consideration of keyword popularity," Journal of Informetrics, Elsevier, vol. 14(1).
    19. Nie, Da-Cheng & An, Ya-Hui & Dong, Qiang & Fu, Yan & Zhou, Tao, 2015. "Information filtering via balanced diffusion on bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 44-53.
    20. Sohn, Jeong Woong & Kim, Jin Ki, 2020. "Factors that influence purchase intentions in social commerce," Technology in Society, Elsevier, vol. 63(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:396:y:2014:i:c:p:66-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.