IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v474y2017icp334-343.html
   My bibliography  Save this article

Effect of recent popularity on heat-conduction based recommendation models

Author

Listed:
  • Li, Wen-Jun
  • Dong, Qiang
  • Shi, Yang-Bo
  • Fu, Yan
  • He, Jia-Lin

Abstract

Accuracy and diversity are two important measures in evaluating the performance of recommender systems. It has been demonstrated that the recommendation model inspired by the heat conduction process has high diversity yet low accuracy. Many variants have been introduced to improve the accuracy while keeping high diversity, most of which regard the current node-degree of an item as its popularity. However in this way, a few outdated items of large degree may be recommended to an enormous number of users. In this paper, we take the recent popularity (recently increased item degrees) into account in the heat-conduction based methods, and propose accordingly the improved recommendation models. Experimental results on two benchmark data sets show that the accuracy can be largely improved while keeping the high diversity compared with the original models.

Suggested Citation

  • Li, Wen-Jun & Dong, Qiang & Shi, Yang-Bo & Fu, Yan & He, Jia-Lin, 2017. "Effect of recent popularity on heat-conduction based recommendation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 334-343.
  • Handle: RePEc:eee:phsmap:v:474:y:2017:i:c:p:334-343
    DOI: 10.1016/j.physa.2017.01.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117300390
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.01.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanbo Zhou & Linyuan Lü & Weiping Liu & Jianlin Zhang, 2013. "The Power of Ground User in Recommender Systems," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-11, August.
    2. Song, Wen-Jun & Guo, Qiang & Liu, Jian-Guo, 2014. "Improved hybrid information filtering based on limited time window," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 192-197.
    3. An Zeng & Stanislao Gualdi & Matúš Medo & Yi-Cheng Zhang, 2013. "Trend Prediction In Temporal Bipartite Networks: The Case Of Movielens, Netflix, And Digg," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(04n05), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yang & Han, Lixin, 2020. "Personalized recommendation via network-based inference with time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    2. Zhang, Peng & Song, Xiaoyu & Xue, Leyang & Gu, Ke, 2019. "A new recommender algorithm on signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 317-321.
    3. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    4. Zhu, Xuzhen & Tian, Hui & Zhang, Tianqiao, 2018. "Symmetrical information filtering via punishing superfluous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 1-9.
    5. Geng, Bingrui & Li, Lingling & Jiao, Licheng & Gong, Maoguo & Cai, Qing & Wu, Yue, 2015. "NNIA-RS: A multi-objective optimization based recommender system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 383-397.
    6. Wang, Yang & Han, Lixin, 2020. "Personalized recommendation via network-based inference with time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    7. Zhou, Yanbo & Li, Qu & Yang, Xuhua & Cheng, Hongbing, 2021. "Predicting the popularity of scientific publications by an age-based diffusion model," Journal of Informetrics, Elsevier, vol. 15(4).
    8. Li, Heyang & Zeng, An, 2022. "Improving recommendation by connecting user behavior in temporal and topological dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    9. Wu, Jiayun & He, Langzhou & Jia, Tao & Tao, Li, 2023. "Temporal link prediction based on node dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    10. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Xie, Zheng & Zhang, Shengjun & Yi, Dongyun, 2015. "Predicting link directions using local directed path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 260-267.
    11. Hao Liao & Xiao-Min Huang & Xing-Tong Wu & Ming-Kai Liu & Alexandre Vidmer & Mingyang Zhou & Yi-Cheng Zhang, 2019. "Enhancing countries' fitness with recommender systems on the international trade network," Papers 1904.02412, arXiv.org.
    12. Liebig, Jessica & Rao, Asha, 2016. "Predicting item popularity: Analysing local clustering behaviour of users," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 523-531.
    13. Yu, Fei & Zeng, An & Gillard, Sébastien & Medo, Matúš, 2016. "Network-based recommendation algorithms: A review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 192-208.
    14. Wang, Xi & Li, Heyang & Zeng, An, 2018. "Quantifying users’ selection behavior in online commercial systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 86-95.
    15. Hao Liao & Xiao-Min Huang & Xing-Tong Wu & Ming-Kai Liu & Alexandre Vidmer & Ming-Yang Zhou & Yi-Cheng Zhang, 2018. "Enhancing Countries’ Fitness with Recommender Systems on the International Trade Network," Complexity, Hindawi, vol. 2018, pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:474:y:2017:i:c:p:334-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.