IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v421y2015icp44-53.html
   My bibliography  Save this article

Information filtering via balanced diffusion on bipartite networks

Author

Listed:
  • Nie, Da-Cheng
  • An, Ya-Hui
  • Dong, Qiang
  • Fu, Yan
  • Zhou, Tao

Abstract

The recent decade has witnessed the increasing popularity of recommender systems, which help users acquire relevant commodities and services from overwhelming resources on Internet. Some simple physical diffusion processes have been used to design effective recommendation algorithms for user–object bipartite networks, such as mass diffusion (MD) and heat conduction (HC) algorithms, which have different advantages respectively on accuracy and diversity. In this paper, we explore how to combine MD and HC processes to get better recommendation performance and propose a new algorithm mimicking the hybrid of MD and HC processes, named balanced diffusion (BD) algorithm. Numerical experiments on three benchmark data sets, MovieLens, Netflix and RateY ourMusic, show that BD algorithm outperforms three typical diffusion-like algorithms on the three important metrics, accuracy, diversity and novelty. Specifically, it not only provides accurate recommendation results, but also yields higher diversity and novelty in recommendations by accurately recommending unpopular objects.

Suggested Citation

  • Nie, Da-Cheng & An, Ya-Hui & Dong, Qiang & Fu, Yan & Zhou, Tao, 2015. "Information filtering via balanced diffusion on bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 44-53.
  • Handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:44-53
    DOI: 10.1016/j.physa.2014.11.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114009698
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.11.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Resnick & Neophytos Iacovou & Mitesh Suchak & Peter Bergstrom & John Riedl, 1994. "GroupLens: An Open Architecture for Collaborative Filtering of Netnews," Working Paper Series 165, MIT Center for Coordination Science.
    2. Da-Cheng Nie & Zi-Ke Zhang & Jun-Lin Zhou & Yan Fu & Kui Zhang, 2014. "Information Filtering on Coupled Social Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Guilin & Gao, Tianrun & Zhu, Xuzhen & Tian, Hui & Yang, Zhao, 2017. "Personalized recommendation based on preferential bidirectional mass diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 397-404.
    2. Hu, Liang & Ren, Liang & Lin, Wenbin, 2018. "A reconsideration of negative ratings for network-based recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 690-701.
    3. Zhu, Xuzhen & Tian, Hui & Zhang, Tianqiao, 2018. "Symmetrical information filtering via punishing superfluous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 1-9.
    4. An, Ya-Hui & Dong, Qiang & Sun, Chong-Jing & Nie, Da-Cheng & Fu, Yan, 2016. "Diffusion-like recommendation with enhanced similarity of objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 708-715.
    5. Dong, Qiang & Yuan, Quan & Shi, Yang-Bo, 2019. "Alleviating the recommendation bias via rank aggregation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Charles M.C. & Ma, Paul & Wang, Charles C.Y., 2015. "Search-based peer firms: Aggregating investor perceptions through internet co-searches," Journal of Financial Economics, Elsevier, vol. 116(2), pages 410-431.
    2. Shuang-Bo Sun & Zhi-Heng Zhang & Xin-Ling Dong & Heng-Ru Zhang & Tong-Jun Li & Lin Zhang & Fan Min, 2017. "Integrating Triangle and Jaccard similarities for recommendation," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-16, August.
    3. Zhang, Peng & Song, Xiaoyu & Xue, Leyang & Gu, Ke, 2019. "A new recommender algorithm on signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 317-321.
    4. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    5. Sohn, Jeong Woong & Kim, Jin Ki, 2020. "Factors that influence purchase intentions in social commerce," Technology in Society, Elsevier, vol. 63(C).
    6. Zhang, Yi & Robinson, Douglas K.R. & Porter, Alan L. & Zhu, Donghua & Zhang, Guangquan & Lu, Jie, 2016. "Technology roadmapping for competitive technical intelligence," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 175-186.
    7. Molaie, Mir Majid & Lee, Wonjae, 2022. "Economic corollaries of personalized recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    8. An, Ya-Hui & Dong, Qiang & Sun, Chong-Jing & Nie, Da-Cheng & Fu, Yan, 2016. "Diffusion-like recommendation with enhanced similarity of objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 708-715.
    9. Zhang, Jing & Peng, Qinke & Sun, Shiquan & Liu, Che, 2014. "Collaborative filtering recommendation algorithm based on user preference derived from item domain features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 66-76.
    10. Chen, Jianrui & Wei, Lidan & Uliji, & Zhang, Li, 2018. "Dynamic evolutionary clustering approach based on time weight and latent attributes for collaborative filtering recommendation," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 8-18.
    11. Hausmann, Ricardo & Stock, Daniel P. & Yıldırım, Muhammed A., 2022. "Implied comparative advantage," Research Policy, Elsevier, vol. 51(8).
    12. Hael Al-bashiri & Mansoor Abdullateef Abdulgabber & Awanis Romli & Hasan Kahtan, 2018. "An improved memory-based collaborative filtering method based on the TOPSIS technique," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-26, October.
    13. Su, Zhan & Zheng, Xiliang & Ai, Jun & Shen, Yuming & Zhang, Xuanxiong, 2020. "Link prediction in recommender systems based on vector similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    14. Latha, R., 2022. "Enhancing recommendation competence in nearest neighbour models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    15. Lee, Yan-Li & Zhou, Tao & Yang, Kexin & Du, Yajun & Pan, Liming, 2023. "Personalized recommender systems based on social relationships and historical behaviors," Applied Mathematics and Computation, Elsevier, vol. 437(C).
    16. Park, Youngjin & Yoon, Janghyeok, 2017. "Application technology opportunity discovery from technology portfolios: Use of patent classification and collaborative filtering," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 170-183.
    17. Muhammed A. Yildirim, 2014. "Implied Comparative Advantage," CID Working Papers 276, Center for International Development at Harvard University.
    18. Qian, Fulan & Zhao, Shu & Tang, Jie & Zhang, Yanping, 2016. "SoRS: Social recommendation using global rating reputation and local rating similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 61-72.
    19. Zhang, Shujuan & Jin, Zhen & Zhang, Juan, 2016. "The dynamical modeling and simulation analysis of the recommendation on the user–movie network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 310-319.
    20. Zhang, Peng & Wang, Duo & Xiao, Jinghua, 2017. "Improving the recommender algorithms with the detected communities in bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 147-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:44-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.