IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v505y2018icp171-178.html
   My bibliography  Save this article

A non extensive view of electrical resistivity spatial distribution estimated using inverted Transient Electromagnetic responses in a karstified formation (Keritis basin, Crete, Greece)

Author

Listed:
  • Vallianatos, Filippos

Abstract

Karstified geological structures are inherently complex with long-range spatial correlations in their physical properties. In the present study, the pseudo 3D electrical resistivity structure obtained after a Transient Electromagnetic Method (TEM) survey in the karstified Keritis Basin (Western Crete, Greece), analyzed in view of non-extensive statistical physics. Our results present that the electrical resistivity spatial pattern estimated after a layered TEM response inversion, follow a q-exponential distributions, a strong evidence of a multi-scaled hierarchical structure. The essential goal of this paper is to present in a real geological complex formation that the resistivity pattern obtained from 1D TEM inversion presents a spatial distribution, which described by non extensive statistical physics.

Suggested Citation

  • Vallianatos, Filippos, 2018. "A non extensive view of electrical resistivity spatial distribution estimated using inverted Transient Electromagnetic responses in a karstified formation (Keritis basin, Crete, Greece)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 171-178.
  • Handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:171-178
    DOI: 10.1016/j.physa.2018.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118303492
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Potirakis, S.M. & Minadakis, G. & Eftaxias, K., 2012. "Analysis of electromagnetic pre-seismic emissions using Fisher information and Tsallis entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 300-306.
    2. Ping Wang & Zhe Chang & Huanyu Wang & Hong Lu, 2015. "Scale-invariant structure of earthquake energy fluctuations for different faulting styles," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(8), pages 1-6, August.
    3. Vallianatos, Filippos & Michas, George & Benson, Phil & Sammonds, Peter, 2013. "Natural time analysis of critical phenomena: The case of acoustic emissions in triaxially deformed Etna basalt," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5172-5178.
    4. Vallianatos, Filippos & Sammonds, Peter, 2010. "Is plate tectonics a case of non-extensive thermodynamics?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4989-4993.
    5. Vallianatos, Filippos, 2011. "A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(10), pages 1773-1778.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cartwright-Taylor, Alexis & Vallianatos, Filippos & Sammonds, Peter, 2014. "Superstatistical view of stress-induced electric current fluctuations in rocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 368-377.
    2. Papadakis, Giorgos & Vallianatos, Filippos & Sammonds, Peter, 2016. "Non-extensive statistical physics applied to heat flow and the earthquake frequency–magnitude distribution in Greece," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 135-144.
    3. Ioannis, Koutalonis & Filippos, Vallianatos, 2020. "Observational evidence of non-extensive behavior of seismic coda waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    4. Ferreira, Douglas S.R. & Ribeiro, Jennifer & Oliveira, Paulo S.L. & Pimenta, André R. & Freitas, Renato P. & Papa, Andrés R.R., 2020. "Long-range correlation studies in deep earthquakes global series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    5. Vallianatos, Filippos & Koutalonis, Ioannis & Chatzopoulos, Georgios, 2019. "Evidence of Tsallis entropy signature on medicane induced ambient seismic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 35-43.
    6. Restrepo, Juan F. & Schlotthauer, Gastón & Torres, María E., 2014. "Maximum approximate entropy and r threshold: A new approach for regularity changes detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 97-109.
    7. Liu, Guoliang, 2017. "A new physical model for earthquake time interval distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 62-65.
    8. Stavros-Richard G. Christopoulos & Nicholas V. Sarlis, 2017. "An Application of the Coherent Noise Model for the Prediction of Aftershock Magnitude Time Series," Complexity, Hindawi, vol. 2017, pages 1-27, February.
    9. Kong, Xiangguo & Wang, Enyuan & He, Xueqiu & Li, Dexing & Liu, Quanlin, 2017. "Time-varying multifractal of acoustic emission about coal samples subjected to uniaxial compression," Chaos, Solitons & Fractals, Elsevier, vol. 103(C), pages 571-577.
    10. Potirakis, Stelios M. & Zitis, Pavlos I. & Eftaxias, Konstantinos, 2013. "Dynamical analogy between economical crisis and earthquake dynamics within the nonextensive statistical mechanics framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2940-2954.
    11. Scherrer, T.M. & França, G.S. & Silva, R. & de Freitas, D.B. & Vilar, C.S., 2015. "Nonextensivity at the Circum-Pacific subduction zones—Preliminary studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 63-71.
    12. Loukidis, Andronikos & Perez-Oregon, Jennifer & Pasiou, Ermioni D. & Sarlis, Nicholas V. & Triantis, Dimos, 2021. "Similarity of fluctuations in critical systems: Acoustic emissions observed before fracture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    13. Minadakis, G. & Potirakis, S.M. & Stonham, J. & Nomicos, C. & Eftaxias, K., 2012. "The role of propagating stress waves on a geophysical scale: Evidence in terms of nonextensivity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5648-5657.
    14. Jayashree Bulusu & Kusumita Arora & Shubham Singh & Anusha Edara, 2023. "Simultaneous electric, magnetic and ULF anomalies associated with moderate earthquakes in Kumaun Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3925-3955, April.
    15. Pavlos, G.P. & Karakatsanis, L.P. & Xenakis, M.N. & Pavlos, E.G. & Iliopoulos, A.C. & Sarafopoulos, D.V., 2014. "Universality of non-extensive Tsallis statistics and time series analysis: Theory and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 58-95.
    16. Potirakis, S.M. & Mastrogiannis, D., 2017. "Critical features revealed in acoustic and electromagnetic emissions during fracture experiments on LiF," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 11-22.
    17. Loukidis, Andronikos & Pasiou, Ermioni D. & Sarlis, Nicholas V. & Triantis, Dimos, 2020. "Fracture analysis of typical construction materials in natural time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    18. Eck, Daniel J. & McKeague, Ian W., 2016. "Central Limit Theorems under additive deformations," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 156-162.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:505:y:2018:i:c:p:171-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.